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One is always fascinated by the definition of e through Euler’s limit, limn(1+1/n)n= e. It is not easy to 
prove that this limit exists if one does not use l’Hôpital’s rule…  And how many of us vaguely know about 
Stirling’s estimate n n n e n! / ( / ) ?» θ π2 1 2  Those of us who do, may avoid mentioning Stirling’s estimate in 
the classroom because of the difficulty of proving it, despite the fact that this estimation is used to cal-
culate n! in software packages for values of n on the order of 100. The paper, “Euler’s Limit and Stirling’s 
Estimate,” precisely addresses this gap and proposes a natural path to discuss these questions in a calculus 
course.

The proof of the formulas goes through an analysis of the function fc(x) := (1+1/x)x+c for cR and 
positive x. This study highlights the special role played by the value c = 1/2, which is needed for Stirling’s 
estimate. To be precise, Hammett proves that limn n!/n1/2(n/e)n is a positive constant K. Determining 
the precise value K =n n n e n! / ( / ) ?» θ π2 1 2 is not addressed in the paper, since this cannot be done by elementary means. 
Hence, a significant merit of the paper is that it separates the elementary part of Stirling’s formula from the 
non-elementary one.

By considering  gc(x) = ln fc(x), it is easy to show that fc is decreasing for c > 1/2, and increasing for suffi-
ciently large c when c < 1/2. This experimental fact leads to the natural question: What happens for c = 1/2? 
Also, it is straightforward that limx gc(x) = 1 for all c, which yields Euler’s limit when taking c = 0.

As for the convergence of the sequence {gn(c)} := {(n!/nc)(e/n)n} to a positive real number, one first ob-
serves that the sequence is monotonically increasing for c < 1/2 and monotonically decreasing for c > 1/2. 
A finer analysis is needed in the particular case c = 1/2: the author uses an elegant trick to show that gn(1/2) 
is both monotonically decreasing and bounded from below by a positive constant through the use of the 
trapezoid rule for approximation of integrals.

The paper is well-written, clear and entertaining. It presents in an elementary way some deep and im-
portant results of analysis that are too often left aside because they are believed to be difficult to present. 
This paper should be very readable by students as a nice application of calculus and introductory analysis.

Response  

This is truly humbling for me. I love The College Mathematics Journal, and consider it to be one of the most 
important publications for college mathematics educators. On numerous occasions, I have been enriched 
in my own thinking and classroom preparedness because of a featured article. My students and I have mu-
tually benefited in tremendous ways because of this journal, and so to be recognized as having contributed 
significantly to its content is an honor that I do not take lightly. Thank you.

This particular article’s entire content flowed from a seemingly trifling question: Does the Stirling
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out to be true), then writing down the inequality for consecutive terms of the sequence, 
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and rearranging and canceling leads us to the equivalent inequality e < (1+1/n)n+1/2. This gave me the idea 
to consider the monotonicity of the function family (1+1/x)x+c for various cR, which was just the ticket. 
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For me this was a lesson, yet again, that we need to keep asking questions and tinkering. You never know 
what may come of it!
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