
The 2017 Putnam Competition Problems and Solutions

A1. Let S be the smallest set of positive integers such that
a) 2 is in S,
b) n is in S whenever n2 is in S, and
c) (n+ 5)2 is in S whenever n is in S.

Which positive integers are not in S?

(The set S is “smallest” in the sense that S is contained in any other such set.)

Answer. The positive integers that are not in S are 1 and the multiples of 5.

Solution. First note that by combining conditions c) and b), n ∈ S implies n+5 ∈ S.
Also, because 2 ∈ S, we have 72 = 49 ∈ S and therefore (49 + 5)2 = 542 ∈ S. Thus,
because 542 ≡ 1 (mod 5), all sufficiently large positive integers that are ≡ 1 (mod 5)
are in S.

Now let a > 1 be an integer that is not a multiple of 5. Then the sequence
a, a2, a4, a8, a16, . . . grows without bound, and by Fermat’s little theorem (or by a
check of cases mod 5) all the terms of the sequence starting with a4 are ≡ 1 (mod 5).
Thus the sequence contains elements of S, and by repeated application of condition
b) it follows that a ∈ S.

On the other hand, it is easy to check that the set of all integers greater than 1
that are not multiples of 5 satisfies conditions a), b), and c), so this is the set S, and
the complement of S consists of the integers listed in the answer.

A2. Let Q0(x) = 1, Q1(x) = x, and

Qn(x) =
(Qn−1(x))2 − 1

Qn−2(x)

for all n ≥ 2. Show that, whenever n is a positive integer, Qn(x) is equal to a
polynomial with integer coefficients.

Solution 1. Let a sequence of polynomials be defined by P−1(x) = 0, P0(x) = 1, and
Pn(x) = xPn−1(x) − Pn−2(x) for all n ≥ 1. Clearly, these polynomials have integer
coefficients, so it will be enough to show that Qn(x) = Pn(x) for all n ≥ 0. Note that
for all n ≥ 2,(

Pn(x) −Pn−1(x)
Pn−1(x) −Pn−2(x)

)
=

(
x −1
1 0

)(
Pn−1(x) −Pn−2(x)
Pn−2(x) −Pn−3(x)

)
= · · ·

=

(
x −1
1 0

)n−1(
P1(x) −P0(x)
P0(x) −P−1(x)

)
=

(
x −1
1 0

)n
.

Taking determinants of both sides, we see that

−Pn(x)Pn−2(x) + (Pn−1(x))2 = 1n = 1, which implies Pn(x) =
(Pn−1(x))2 − 1

Pn−2(x)
.

But this is precisely the defining recurrence relation for Qn(x), and since
P0(x) = Q0(x) and P1(x) = Q1(x), we are done.



Solution 2. To show that the Qn(x) are polynomials with integer coefficients, we
will show that they also satisfy the simpler recurrence Qn(x) = xQn−1(x)−Qn−2(x).
The proof is by induction on n ≥ 2; for n = 2 we check directly that

Q2(x) =
(Q1(x))2 − 1

Q0(x)
= x2 − 1 = xQ1(x)−Q0(x).

Assuming that Qn(x) = xQn−1(x)−Qn−2(x) for n = N − 1, define

RN(x) = xQN−1(x)−QN−2(x). Then

RN(x)QN−2(x) = xQN−1(x)QN−2(x)− (QN−2(x))2

= xQN−1(x)QN−2(x)−
((QN−2(x))2 − 1

QN−3(x)
·QN−3(x) + 1

)
= xQN−1(x)QN−2(x)−QN−1(x)QN−3(x)− 1

= QN−1(x)
(
xQN−2(x)−QN−3(x)

)
− 1

= (QN−1(x))2 − 1 by induction hypothesis, so

RN(x) =
(QN−1(x))2 − 1

QN−2(x)
= QN(x), and we are done.

A3. Let a and b be real numbers with a < b, and let f and g be continuous functions

from [a, b] to (0,∞) such that
∫ b
a
f(x) dx =

∫ b
a
g(x) dx but f 6= g. For every positive

integer n, define

In =

∫ b

a

(f(x))n+1

(g(x))n
dx .

Show that I1, I2, I3, . . . is an increasing sequence with lim
n→∞

In =∞.

Solution. First consider

In − In−1 =

∫ b

a

(f(x))n+1

(g(x))n
dx−

∫ b

a

(f(x))n

(g(x))n−1
dx

=

∫ b

a

(f(x))n+1 − g(x)(f(x))n

(g(x))n
dx

=

∫ b

a

(
(f(x))n − (g(x))n

)(
f(x)− g(x)

)
(g(x))n

+
(
f(x)− g(x)

)
dx

=

∫ b

a

(
(f(x))n − (g(x))n

)(
f(x)− g(x)

)
(g(x))n

dx+

∫ b

a

(
f(x)− g(x)

)
dx.

The first integral is positive, because the integrand is nonnegative, continuous, and
not everywhere zero (given f 6= g). The second integral is zero, because the integrals
of f and g over the interval are equal. Thus In− In−1 is positive for all n ≥ 2, so the
sequence (In) is increasing.

Next, we claim that there exist a subinterval I ⊆ [a, b] of positive length L and

a constant M > 1 so that
f(x)

g(x)
≥ M for all x ∈ I. Proof: Because f(x) 6= g(x)

for some x ∈ [a, b] and f − g is continuous, there is a subinterval on which either
f − g > 0 or f − g < 0. But in the latter case there must also be a point x ∈ [a, b]
(and hence a subinterval of [a, b]) where f(x) > g(x), otherwise we would have



∫ b
a
f(x) dx <

∫ b
a
g(x) dx. Now we can take any closed subinterval I on which

f(x) > g(x), and we can take M to be the minimum value of the continuous function
f(x)

g(x)
on that subinterval.

Finally,

In =

∫ b

a

(f(x))n+1

(g(x))n
dx ≥

∫
I

(f(x))n+1

(g(x))n
dx

=

∫
I

(
f(x)

g(x)

)n
f(x) dx

≥Mn

∫
I

f(x) dx .

Because M > 1 and
∫
I
f(x) dx is a positive constant, this shows that lim

n→∞
In =∞.

A4. A class with 2N students took a quiz, on which the possible scores were 0, 1, . . . , 10.
Each of these scores occurred at least once, and the average score was exactly 7.4.
Show that the class can be divided into two groups of N students in such a way that
the average score for each group was exactly 7.4.

Solution 1. Let the student scores in non-decreasing order be

0 = s1 ≤ s2 ≤ · · · ≤ s2N = 10,

and let the sum of all the scores be S. From the given average score, we have

S = (2N)(7.4) =
74N

5
, so N is divisible by 5 and S is even. Let ak = s2k − s2k−1;

because all scores occur, each ak must be either 0 or 1. Now let t = a1 +a2 + · · ·+aN ,
and note that t has the same parity as S, so t is also even. Then there is some n with
n < N for which a1 + a2 + · · · + an = 1

2
t. Then for the group of N students whose

scores are s2, s4, . . . , s2n, s2n+1, s2n+3, . . . , s2N−1, the sum of their scores is

s2 + s4 + · · ·+ s2n + s2n+1 + · · ·+ s2N−1

= (a1 + s1) + · · ·+ (an + s2n−1) + s2n+1 + · · ·+ s2N−1

= (a1 + · · ·+ an) + (s1 + s3 + · · ·+ s2N−1)

=
1

2

(
t+ 2s1 + 2s3 + · · ·+ 2s2N−1

)
=

1

2

(
(s1 + s3 + · · ·+ s2N−1) + ((a1 + s1) + · · ·+ (aN + s2N−1)

)
=

1

2
(s1 + s3 + · · ·+ s2N−1 + s2 + · · ·+ s2N) =

1

2
S = N(7.4),

so the average score for this group is 7.4 (and thus the average score for the comple-
mentary group is also 7.4), as desired.

Solution 2. As in the first solution, the number of students is divisible by 10; say
the scores are s1, . . . , s10m and thus satisfy s1 + · · ·+ s10m = 74m. If it is possible to
rearrange the scores such that s1+· · ·+s5m = 37m, we are done; otherwise, rearrange
them so that

S1 = s1 + · · ·+ s5m = 37m− δ, S2 = s5m+1 + · · ·+ s10m = 37m+ δ



with δ > 0 as small as possible. If a term in S1 is exactly one less than a term in S2,
then we can exchange those terms and make δ smaller, contradiction. So because all
scores occur, if the smallest term in S1 is a, then a + 1 must also appear in S1, and
repeating this argument, a+ 1, a+ 2, . . . must all appear in S1. Let the largest term
in S2 be b. Then 5ma ≤ S1 < S2 ≤ 5mb, so b > a, so b − 1 must appear in S1 and
we can exchange b− 1 from S1 and b from S2 after all to reduce δ, contradiction.

A5. Each of the integers from 1 to n is written on a separate card, and then the cards
are combined into a deck and shuffled. Three players, A,B, and C, take turns in the
order A,B,C,A, . . . choosing one card at random from the deck. (Each card in the
deck is equally likely to be chosen.) After a card is chosen, that card and all higher-
numbered cards are removed from the deck, and the remaining cards are reshuffled
before the next turn. Play continues until one of the three players wins the game by
drawing the card numbered 1.

Show that for each of the three players, there are arbitrarily large values of n for
which that player has the highest probability among the three players of winning the
game.

Solution. For every positive integer n, let An, Bn, Cn denote the probabilities that
players A,B,C (respectively) win the game for that value of n. Note that

A1 = 1, B1 = C1 = 0 (if n = 1, there is only one card, and A gets to choose it).

For n > 1, if player A chooses the card numbered k with k > 1, the game then
proceeds like the original game with k − 1 cards, except that B now chooses first, C
chooses second, and A takes on C’s original role, choosing third. Therefore, we have
the recurrence relations

An =
1

n
+

1

n
C1 +

1

n
C2 + · · ·+ 1

n
Cn−1 ,

Bn =
1

n
A1 +

1

n
A2 + · · ·+ 1

n
An−1 ,

Cn =
1

n
B1 +

1

n
B2 + · · ·+ 1

n
Bn−1 .

Multiplying through by n and then subtracting the equations for n from those for
n+ 1 yields

(n+ 1)An+1 − nAn = Cn , (n+ 1)Bn+1 − nBn = An , (n+ 1)Cn+1 − nCn = Bn .

Thus we haveAn+1

Bn+1

Cn+1

 = Mn

AnBn

Cn

 , where Mn =
1

n+ 1

n 0 1
1 n 0
0 1 n

 .

The eigenvalues of the matrix

n 0 1
1 n 0
0 1 n

 are the roots of (n− λ)3 + 1 = 0, so if we

let ω = e2πi/3, they are given by n− λ = −1, n− λ = −ω, n− λ = −ω2. Dividing by



n+ 1, we find the eigenvalues

1,
n+ ω

n+ 1
,
n+ ω2

n+ 1

of Mn, and a straightforward computation yields corresponding eigenvectors1
1
1

 ,

 1
ω2

ω

 ,

 1
ω
ω2


respectively. In particular, the eigenvectors are the same for each n, and so we can
use them, together with An+1

Bn+1

Cn+1

 = Mn

AnBn

Cn

 ,

to find expressions for the probabilities An, Bn, Cn, as follows:1
0
0

 =
1

3

1
1
1

 +
1

3

 1
ω2

ω

 +
1

3

 1
ω
ω2

 , so

AnBn

Cn

 = Mn−1Mn−2 · · ·M1

1
0
0


=

1

3
Mn−1Mn−2 · · ·M1

1
1
1

+
1

3
Mn−1Mn−2 · · ·M1

 1
ω2

ω


+

1

3
Mn−1Mn−2 · · ·M1

 1
ω
ω2


=

1

3

1
1
1

+
1

3

n−1∏
k=1

k + ω

k + 1
·

 1
ω2

ω

+
1

3

n−1∏
k=1

k + ω2

k + 1
·

 1
ω
ω2

 .

Let P =
n−1∏
k=1

k + ω

k + 1
. Then, because ω2 = ω, we have

An =
1

3
(1 + P + P ) =

1

3
(1 + 2 Re(P )),

Bn =
1

3
(1 + Pω + Pω) =

1

3
(1 + 2 Re(Pω)),

Cn =
1

3
(1 + Pω + Pω) =

1

3
(1 + 2 Re(Pω)).

Thus, which of the three players has the highest probability of winning the game de-
pends only on which of Re(P ), Re(Pω), Re(Pω) is the largest; that, in turn, depends
only on the argument of P . Specifically, An is largest when Arg(P ) is in the interval

[−π/3, π/3], Bn is largest when Arg(P ) is in [π/3, π], and Cn is largest when Arg(P )



is in [−π,−π/3]. But modulo 2π we have

Arg(P ) =
n−1∑
k=1

Arg
(k + ω

k + 1

)
=

n−1∑
k=1

arctan

√
3

2k − 1
.

Because arctanx ∼ x as x→ 0, we have

arctan

√
3

2k − 1
∼
√

3/2

k
as k →∞,

so the values of arg(P ) above are the partial sums of a divergent series, but the
difference between successive partial sums tends to 0. Thus modulo 2π, the values
will revisit each of the three intervals [−π/3, π/3], [π/3, π], [−π,−π/3] infinitely often,
which concludes the proof.

A6. The 30 edges of an icosahedron are distinguished by labeling them 1, 2, . . . , 30. How
many different ways are there to paint each edge red, white, or blue such that each
of the 20 triangular faces of the icosahedron has two edges of the same color and a
third edge of a different color?

Answer. 220 · 310 = 1210 = 61, 917, 364, 224.

Solution. Let F = F3 = {0, 1, 2} be the field with 3 elements; let those elements
correspond to “red”, “white”, and “blue” respectively. Then a way of painting the
edges can be represented by an element of the vector space V = F 30. Label the 20
faces of the icosahedron 1, 2, . . . , 20, and for the i-th face, define a function fi : V → F
by

fi(v) = the sum (modulo 3) of the colors in v of the edges of face i .

Using these functions, we can define a linear transformation T : V → F 20 by

T (v) = (f1(v), f2(v), . . . , f20(v)).

The condition that face i has two edges of the same color and a third edge of a
different color is easily checked to be equivalent to fi(v) 6= 0, so we are looking for
the cardinality of the inverse image under T of the subset {1, 2}20 of F 20.

We can show that T is surjective by showing that each of the standard basis vectors
of F 20 is in the image, that is, that for any given face we can find a way of coloring
the edges of the icosahedron so that the sum of the colors around that face is 1 and
the sum of the colors around any other face is 0. By symmetry, it is enough to do
this for a single face. One specific way to achieve this is as follows: Pick any vertex
v of the icosahedron and color the five edges emanating from that vertex, say to the
vertices v1, v2, v3, v4, v5, with the colors 2, 1, 2, 1, 1 in order. Color all other edges of
the icosahedron with color 0, except for the edge connecting v4 and v5 which gets
color 1. Then around every face adjacent to v, the sum of the colors is either 1+2+0
or 1+1+1, so 0 in either case, and with one exception, around every face not adjacent
to v all the colors are 0 and so their sum is certainly 0. The one exception is the face
which is not adjacent to v but which does have v4v5 among its edges; for that face,
the sum of the colors is 1.

Now that we know T is surjective, we can get the desired cardinality by multiplying
the size of the subset {1, 2}20, which is 220, by the size of ker(T ). But we know that



dim ker(T ) + dim im(T ) = dimV = 30, so dim ker(T ) = 30 − 20 = 10 and ker(T )
has 310 elements; the answer follows.

(The B section starts on the next page.)



B1. Let L1 and L2 be distinct lines in the plane. Prove that L1 and L2 intersect if and
only if, for every real number λ 6= 0 and every point P not on L1 or L2, there exist
points A1 on L1 and A2 on L2 such that

#    »

PA2 = λ
#    »

PA1.

Solution 1. To show “if”, take λ = 1 and any point P not on L1 or L2. Then
#    »

PA2 = λ
#    »

PA1 implies that L1 and L2 intersect at A1 = A2. To show “only if”,
assume L1 and L2 have the directions of the vectors v1 =< a1, b1 >,v2 =< a2, b2 >
respectively and intersect at the point (x0, y0). Then the line Li has parametric
equations x = x0 + ait, y = y0 + bit; let P = (p, q) be a point that is not on either

line. Then there are points A1, A2 on L1, L2 respectively with
#    »

PA2 = λ
#    »

PA1 if and
only if there are real numbers t1, t2 (the parameter values for A1, A2) such that

x0 + a2t2 − p = λ(x0 + a1t1 − p) and y0 + b2t2 − q = λ(y0 + b1t1 − q).

This can be written as a system of two linear equations in t1, t2 whose coefficient
matrix is (

λa1 −a2
λb1 −b2

)
;

because λ 6= 0 and the vectors v1,v2 are linearly independent (because the lines are
not parallel), this matrix has nonzero determinant, so it is invertible and thus there
is a unique solution for t1, t2.

Comment. This proof actually shows that the condition “P not on L1 or L2” is
superfluous. In fact, if P is on Li, then the point A3−i on the other line will always
be the intersection point (x0, y0), whereas the point Ai varies with λ - unless P itself
is the intersection point, in which case A1 = A2 = P for every λ.

Solution 2. To show “if”, proceed as in the first solution. To show “only if”, assume
L1 and L2 intersect at a point Q, and take a point P that is not on L1 or L2. Let
M1,M2 be the lines through P parallel to L1, L2 respectively; note that these lines
divide the plane into four “quadrants”, one of which contains the intersection point
Q. Now consider a variable line K that passes through P . Except when K = M1

and when K = M2, the line K will intersect the lines L1, L2 in points A1, A2, and
there will be a nonzero real number λ(K) such that

#    »

PA2 = λ(K) · #    »

PA1. As the line
K rotates around the point P , the number λ(K) will vary continuously. It will be
positive when the line K passes through the “quadrant” containing Q, approaching
0 as K approaches the line M1 (so that the intersection point A1 approaches infinity)
and ∞ as K approaches M2. Similarly, λ(K) will be negative when the line K does
not pass through the “quadrant” containing Q, approaching 0 as K approaches M1

and −∞ as K approaches M2. By the intermediate value theorem, it follows that
λ(K) takes on all real values, and the claim follows.

B2. Suppose that a positive integer N can be expressed as the sum of k consecutive
positive integers

N = a+ (a+ 1) + (a+ 2) + · · ·+ (a+ k − 1)

for k = 2017 but for no other values of k > 1. Considering all positive integers N
with this property, what is the smallest positive integer a that occurs in any of these
expressions?

Answer. a = 16.



Solution. If we do have N = a + (a + 1) + (a + 2) + · · · + (a + k − 1) with an
integer a > 0, then we have N = k

2
(2a + k − 1). In particular, for k = 2017 we

have N = 2017(a + 1008). Now suppose a + 1008 has some odd factor s > 1,
so N = s(2017t), say. Then we can write N as the sum of s consecutive integers
· · ·+(2017t−1)+2017t+(2017t+1)+ · · · , and these are all positive unless s > 2017t.
So if a+ 1008 has an odd factor s > 1, then s ≥ 2017 and thus N ≥ 20172.

If, on the other hand, a+1008 has no odd factor > 1, then a+1008 is a power of 2;
the smallest possibility for this power is 210 = 1024, and this gives N = 2017 · 1024,
which is less than 20172. We now show that this integer does have the specified
property. If we have 2017·1024 = a+(a+1)+(a+2)+· · ·+(a+k−1) = k

2
(2a+k−1),

then k(2a+k−1) = 2017·211, and because 2017 is prime, exactly one of k and 2a+k−1
is divisible by 2017 and the other factor is a power of 2. If k is greater than 2017
and divisible by 2017, then k also has at least one factor 2, so 2a+ k − 1 is odd and
greater than 1, so not a power of 2, contradiction. If 2a+ k − 1 is divisible by 2017,
then k > 1 is a power of 2, so 2a + k − 1 is odd, so 2a + k − 1 = 2017, but then
k ≤ 2017 and so k ≤ 210 = 1024, k(2a + k − 1) ≤ 2017 · 210, contradiction. Thus

the only possible k > 1 is k = 2017, for which N = 2017 · 1024 is the sum of 2017
consecutive integers starting with 16. Because this value of N is less than 20172, it
is the smallest possibility, and so the corresponding value a = 16 is also the smallest
one that occurs.

B3. Suppose that f(x) =
∞∑
i=0

cix
i is a power series for which each coefficient ci is 0 or 1.

Show that if f(2/3) = 3/2, then f(1/2) must be irrational.

Solution. Note that by the comparison test with the geometric series
∞∑
i=0

|x|i, the

power series f(x) is absolutely convergent for x ∈ (−1, 1); in particular, f(1/2) is a

real number. Suppose that f(1/2) is rational. Because f(1/2) =
∞∑
i=0

ci(
1
2
)i, the binary

expansion of this number reads c0.c1c2 · · · ci · · · , and (by the same argument as for
decimal expansions) the sequence c0, c1, . . . of its binary digits is eventually periodic.
If that sequence has eventual period k, then f(x) can be written in the form

f(x) = p1(x) + p2(x)(1 + xk + x2k + x3k + · · · )

= p1(x) +
p2(x)

1− xk

=
p(x)

1− xk

for some polynomials p1(x), p2(x), p(x) with integer coefficients (in fact, p1(x) and

p2(x) have coefficients in {0, 1}). Then we have

3

2
= f(

2

3
) =

p(2
3
)

1− (2
3
)k

=
3k p(2

3
)

3k − 2k
.

However, the denominator of the fraction on the right is odd, which is a contradiction;
it follows that f(1/2) must be irrational.



B4. Evaluate the sum
∞∑
k=0

(
3 · ln(4k + 2)

4k + 2
− ln(4k + 3)

4k + 3
− ln(4k + 4)

4k + 4
− ln(4k + 5)

4k + 5

)
=

3 · ln 2

2
− ln 3

3
− ln 4

4
− ln 5

5
+ 3 · ln 6

6
− ln 7

7
− ln 8

8
− ln 9

9
+ 3 · ln 10

10
− · · · .

(As usual, lnx denotes the natural logarithm of x.)

Answer. ln2(2).

Solution. First consider the series

ln 1

1
− ln 2

2
+

ln 3

3
− ln 4

4
+ · · · ,

which converges by the alternating series test. (Details: lim
n→∞

lnn

n
= 0, the sequence( lnn

n

)
is decreasing for n ≥ 3 because d

dx
( lnx
x

) = 1−lnx
x2

< 0 for x > e, and after the

first term which is zero, the terms alternate in sign.) Let a be the sum of this series,
and let S be the desired sum. Then

S + a = 2 · ln 2

2
− 2 · ln 4

4
+ 2 · ln 6

6
− 2 · ln 8

8
+ 2 · ln 10

10
− · · ·

=
ln 2

1
− ln 2 + ln 2

2
+

ln 2 + ln 3

3
− ln 2 + ln 4

4
+

ln 2 + ln 5

5
− · · ·

= ln 2
(
1− 1

2
+

1

3
− 1

4
+ · · ·

)
+ a

= ln 2 (ln 2) + a ,

and it follows that S = ln2(2), as claimed.

B5. A line in the plane of a triangle T is called an equalizer if it divides T into two regions
having equal area and equal perimeter. Find positive integers a > b > c, with a as
small as possible, such that there exists a triangle with side lengths a, b, c that has
exactly two distinct equalizers.

Answer. a = 9, b = 8, c = 7.

Solution. As usual, let A be the vertex of the triangle opposite the side of length a,
etc. We first consider the case that an equalizer separates vertex A from (the longest)
side BC. Then the equalizer intersects side AB at a point Y and side AC at a point
Z; say AY has length λc and AZ has length µb, so λ, µ ∈ [0, 1]. Then if θ is the
angle at vertex A, the part of T on the same side of the equalizer as A is a triangle
with area

1

2
(λc)(µb) sin θ = λµArea(T ),

so λµ = 1
2

and, in particular, λ, µ ∈ [1
2
, 1]. Meanwhile, the “equal perimeter” property

of the equalizer implies that λc + µb = (1 − λ)c + a + (1 − µ)b, so λc + µb = a+b+c
2

.
Multiplying by λ and then eliminating µ leads to the quadratic equation

cλ2 − a+ b+ c

2
λ+

b

2
= 0 .



If we denote the polynomial on the left-hand side of this equation by p(λ), then
p(1

2
) = b−a

4
< 0 and p(1) = c−a

2
< 0, so the entire interval [1

2
, 1] is between the roots

of the quadratic polynomial (which is positive for large |λ|). This shows that, in fact,
no such equalizer is possible: Any equalizer must intersect the longest side of the
triangle, BC.

Now suppose that an equalizer separates vertex B from side AC. If the side lengths
of the parts of the sides of BA,BC that are on the same side of the equalizer as B
are λc, µa respectively, then we have, by an argument to the one in the previous case,
λµ = 1

2
and λc+ µa = (1− λ)c+ b+ (1− µ)a, from which we get

p(λ) = cλ2 − a+ b+ c

2
λ+

a

2
= 0 .

This time, p(1
2
) = a−b

4
> 0 while p(1) = c−b

2
< 0, so there will be exactly one root of

p(λ) in the interval [1
2
, 1], and thus there will be exactly one equalizer that intersects

both the shortest and the longest side of T .
Finally, consider equalizers that separate C from the shortest side, AB, of the

triangle. If the usual side lengths are λb, µa, we get, after a similar calculation,

p(λ) = bλ2 − a+ b+ c

2
λ+

a

2
= 0 .

Now we have p(1
2
) = a−c

4
> 0 and p(1) = b−c

2
> 0, so p(λ) can have either no

roots, two roots, or a double root in the interval [1
2
, 1]. Because we have exactly one

equalizer from an earlier case, there will be two distinct equalizers in all for T if and
only if p(λ) has a double root. This happens exactly when(

a+ b+ c

2

)2
= 4 · b · a

2
, that is, when (a+ b+ c)2 = 8ab .

So we are looking for a solution of this Diophantine equation in positive integers,
with a > b > c and a as small as possible. In particular, we may assume that a and b
are relatively prime, because any common prime factor they have would also divide c
and then the entire solution could be scaled down by that factor. Then because 8ab
is a perfect square, there are positive integers m and n so that either a = 2m2, b = n2

or a = m2, b = 2n2. In the first case b is odd (because a, b are relatively prime), so
because b > c is a perfect square we have b ≥ 32 = 9, so a > 9. In the second case a
is odd, so a ≥ 9, so the smallest value of a that might be possible is 9. Trying this
case, we get (9 + b+ c)2 = 72b; b is now of the form 2n2 and less than 9, so b = 2 or
b = 8. For b = 2 we would have (11 + c)2 = 144, so c = 1, but there is no triangle
with side lengths 9, 2, 1. However, for b = 8 we get (17 + c)2 = 72 · 8, which yields
c = 7. There is a triangle with side lengths 9, 8, 7, and we have found the answer.

B6. Find the number of ordered 64-tuples (x0, x1, . . . , x63) such that x0, x1, . . . , x63 are
distinct elements of {1, 2, . . . , 2017} and

x0 + x1 + 2x2 + 3x3 + · · ·+ 63x63

is divisible by 2017.

Answer.
2016!

1953!
− 2016 · 63! .



Solution. Note that the sum of the coefficients in x0 +x1 + 2x2 + 3x3 + · · ·+ 63x63 is

1 + (1 + 2 + · · ·+ 63) = 1 + 63 · 32 = 2017.

Because 2017 is prime, we can think of the xi as elements of the field F2017, and we
then have a special case of the following problem:

Given positive integers a1, a2, . . . , ak with a1 + a2 + · · ·+ ak = 2017, find the number
of solutions of the equation a1x1 + a2x2 + · · ·+ akxk = 0 in the field F2017 for which
x1, x2, . . . , xk are distinct.

We will show, by induction on k, that the answer depends only on k and is

f(k) =
2016!

(2017− k)!
− (−1)k · 2016 · (k − 1)! .

In our particular case, we have k = 64, leading to the numerical answer given above.
For the base case k = 1, the only possible equation is 2017x1 = 0, which has

2017 solutions in the field, and we see that f(1) = 1 + 2016 does give the number
of solutions. For k > 1, first note that because a1, . . . , ak are all positive and add to
2017, ak cannot be zero in the field. Therefore, given any distinct x1, . . . , xk−1 in the
field F2017, there will be a unique choice of xk for which (x1, x2, . . . , xk) is a solution;
however, that xk may not be distinct from all of x1, . . . , xk−1.

The number of choices for an ordered (k − 1)-tuple (x1, . . . , xk−1) of distinct ele-

ments from F2017 is 2017 · 2016 · · · (2019 − k) =
2017!

(2018− k)!
. So to get the answer,

we need to subtract from this the number of solutions to a1x1 +a2x2 + · · ·+akxk = 0
for which x1, . . . , xk−1 are distinct but xk is equal to one of x1, . . . , xk−1. If, in fact,
xk is equal to xi, then we have a solution with distinct x1, . . . , xk−1 to the equation
a1x1 + a2x2 + · · · + (ai + ak)xi + · · · + ak−1xk−1 = 0. But the coefficients of this

equation are positive integers that add to 2017, so by induction hypothesis there are
f(k − 1) such solutions. Because i can be any of the numbers 1, . . . , k − 1, we can
conclude that the total number of solutions to a1x1 + a2x2 + · · · + akxk = 0 with
distinct x1, x2, . . . , xk ∈ F2017 is

2017!

(2018− k)!
− (k − 1)f(k − 1) =

=
2017!

(2018− k)!
− (k − 1)

(
2016!

(2018− k)!
− (−1)k−1 · 2016 · (k − 2)!

)
=

(2018− k) · 2016!

(2018− k)!
− (−1)k · 2016 · (k − 1)!

=
2016!

(2017− k)!
− (−1)k · 2016 · (k − 1)!

= f(k), completing the induction.


