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Though the radian is the undisputed king of angular measurement in calculus, required
as it is for the familiar trigonometric derivative and integration formulas to hold true,
it is the degree to which most of us are first introduced. The humble degree—one
three-hundred-sixtieth part of a complete rotation—is one of the oldest methods used
to measure angles. Its use dates to antiquity and it can be found in ancient Babylonian,
Greek, Indian, and Mayan mathematical traditions [1, 4]. Many theories have been
suggested for its ubiquity, ranging from the astronomical (a solar year has approxi-
mately 360 days) [2, p. 37] to the practical (360 has lots of divisors) [8, pp. 10–11],
but the fact remains that the degree is, if not a mathematically ideal way to measure
angles, a particularly human way to do so.

In a typical trigonometry class we devote time learning those special angles that
admit exact trigonometric ratios involving roots of integers, such as 30◦ and 45◦. A
question that might interest students of trigonometry is whether this is also true of the
archetypal measure 1◦? That is, is its sine expressible as a ratio of some combination
of radicals and integers? Can we compute the sine of a single degree exactly?

The answer to this question is “yes,” but the path to computing it meanders through
classic geometry, polynomial algebra, and complex numbers. The purpose of this paper
is to follow this path to value of sin 1◦ and to see some beautiful mathematics along
the way.

The geometry of sine one degree
Since trigonometry literally means “triangle measurement,” a reasonable place to start
our investigation is with the geometry of triangles. The familiar right-triangle for-
mulation of the trigonometric functions can be traced back to both ancient Chinese
[13, pp. 56–71] and Indian [9, p. 7] traditions. Given a right triangle with an acute
angle θ and a hypotenuse of length 1, the sine of θ is the length of the side oppo-
site the angle. The length of the remaining “adjacent” side is precisely the sine of the
complementary angle, or “co-sine,” as is therefore related to the sine by the pair of
equations

sin(90◦ − θ) = cos θ =
√

1 − sin2 θ.
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The sine of an angle can also be computed via isosceles triangles. Consider an
isosceles triangle with vertex angle 2θ and congruent sides of length 1. Since the alti-
tude of an isosceles triangle bisects both the vertex angle and the base, we have

sin θ = 1

2
× base of this isosceles triangle. (1)

The two most familiar isosceles triangles are the equilateral (60–60–60 degree) triangle
and the right-isosceles (45–45–90) triangle, from which the familiar sine formulas
sin 30◦ = 1/2 and sin 45◦ = √

2/2 follow immediately.
Another important triangle, less familiar to us nowadays but was well known to

the Greeks, is the golden triangle: the isosceles triangle whose base angle is twice its
vertex angle [6]. We use this golden triangle to compute the sine of 36◦.

108°

36°

72°

36°

72°

36°72°
36°

72°

x

1

x

1

x

1

x

Figure 1. The golden triangle subdivided.

Assume the congruent sides are length 1 and denote the length of the base by x . An
angle bisector constructed through one of the base angles divides the golden triangle
into the two smaller isosceles triangles depicted in Figure 1: a short, squat 36–36–108
triangle with sides of lengths x , x , and 1; and a tall, skinny 36–72–72 triangle with
sides of length x , x , and 1 − x . This latter triangle is another golden triangle, so it is
similar to the larger one. Comparing ratios of side lengths gives

x

1 − x
= 1

x
,

from which we conclude x = (
√

5 − 1)/2. Greeks recognized this as the golden mean
and is the reason the triangle earned its name. Applying (1), we conclude

sin 18◦ =
√

5 − 1

4
. (2)

Can we deduce the sine of yet smaller angles? If we can construct two angles α > β,
then it is also possible to construct their difference α − β. Moreover, if we know the
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exact values of the trigonometric functions at α and β, then it is possible to determine
the exact values at α − β, namely

sin(α − β) = sin α cos β − cos α sin β,

cos(α − β) = cos α cos β + sin α sin β.

A clever geometric proof of these formulae can be found in [12, pp. 46–47], which we
show in Figure 2; proofs with words can be found in any trigonometry textbook.

cosα  cos  β

α
β

sinα  sin  β

cosα  sin  β

sinα  cos  β

sin β

cosβ

α

α

sin (α – β)

cos (α – β ) 

Figure 2. Verifying the angle-subtraction formulas.

Using this process, how small an angle can we obtain? Given that we know the sine
and cosine at 45◦ and 30◦, we can compute

sin 15◦ = sin(45◦ − 30◦) =
√

2
(√

3 − 1
)

4
, (3)

cos 15◦ = cos(45◦ − 30◦) =
√

2
(√

3 + 1
)

4
.

Combining these two values with the trigonometric values at α = 18◦ from (2), we
can work down to 3◦:

sin 3◦ =
√

2
(√

3 + 1
) (√

5 − 1
)

− 2
(√

3 − 1
)√

5 + √
5

16
. (4)

This is just a stone’s throw away from sin 1◦, but sadly, that is as close as we are
going get using only the Greek geometer’s tools of straightedge and compass. None
of the Greek geometers—or indeed any of the geometers to come after—could find
a straightedge-and-compass construction that would yield 1◦. It would not be until
centuries later that such a construction was shown to be impossible, a consequence
of the powerful algebraic theorems devised by mathematicians in the 18th and 19th
centuries [14]. Perhaps the most relevant result to us is the following: An angle of
integer degree measure can be trisected if and only if it is a multiple of 9◦. Since this is
not true of 3◦, we cannot construct 1◦. Interested readers can find a wonderful survey
of the algebraic results regarding the constructibility of angles in the Pólya Award
winning article [7].
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The algebra of sine one degree
While the tools of algebra are enough to scuttle the constructibility of 1◦, they can
(fortuitously) be used to salvage its sine. It is possible to algebraically manipulate
trigonometric identities to solve for sin 1◦ as the solution of an equation rather than as
the length of a side of a very specific triangle.

For example, if we repeatedly apply the angle-addition formulas for sine and cosine
(which the interested reader is invited to obtain by modifying the labels on Figure 2),
we find

sin 3θ = 3 sin θ − 4 sin3 θ, (5)

which algebraically relates the sine of an angle to the sine of thrice the angle. Setting
θ = 15◦ in the “triple-angle formula” (5) gives

sin 45◦ = 3 sin 15◦ − 4 sin3 15◦ =
(√

3 + 1
)√

2 − √
3

2
, (6)

using the exact value of sin 15◦ from (3). After a moment’s pause (or panic?), we see
that (6) is equal to a more familiar value sin 45◦ = √

2/2 by squaring both sides.
Since we know the exact value of sine at 3◦, setting θ = 1◦ in (5) gives

sin 3◦ = 3 sin 1◦ − 4 sin3 1◦,

showing that x = sin 1◦ is a solution to the polynomial equation sin 3◦ = 3x − 4x3.
Isolating the x3 term and using the exact expression for sin 3◦ from (4), this becomes

x3 = 3

4
x −

√
2 (

√
3 + 1)(

√
5 − 1) − 2 (

√
3 − 1)

√
5 + √

5

64
. (7)

Figure 3 shows a plot of the curves y = x3 and y = (3x − sin 3◦)/4, which clearly
intersect three times, so the solution closest to the origin must be the exact value of
sin 1◦, but how do we find it?
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Figure 3. Solutions to the sin 1◦ cubic equation.
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The solution to this equation, or rather, the more general “depressed cubic” equation

x3 = Ax + B, (8)

is one of the great triumphs of algebra. Discovered first by Italian mathematician
Niccolo Tartaglia and communicated to the world by Girolamo Cardano in the mid-
16th century, the basic idea behind the solution is to assume that the value x is a
difference of two quantities, say x = t − u. Using algebraic manipulations, it follows
that

x3 = (t − u)3 = −3tu(t − u) + (t3 − u3) = −3tu x + (t3 − u3). (9)

What makes this formula such a wonder is that Tartaglia and Cardano derived it
entirely geometrically as a statement about the volume of a large cube with a smaller
cube removed from one corner! A wonderful description of its discovery, and the feud
that eventually resulted between the two mathematicians, can be found in [5, pp. 133–
154]. Comparing (8) and (9), if we can find values of t and u that solve the pair of
equations

A = −3tu, B = t3 − u3, (10)

then x = t − u will solve the original depressed cubic (8); so let us solve (10) for t
and u.

Solving both equations simultaneously for u3 yields

− A3

27t3
= t3 − B,

which can be rewritten as

(t3)2 − B t3 + A

27
= 0.

This is a quadratic in t3, so applying the quadratic formula and taking the positive
radical (as Cardano would have) gives

t3 = B

2
+
√

B2

4
− A3

27
.

Taking the cube root of this yields t , which we can then use to solve for u to obtain

x = t − u = 3

√
B

2
+
√

B2

4
− A3

27
− 3

√
− B

2
+
√

B2

4
− A3

27
,

as a solution of the depressed cubic.
Now we apply this to the problem at hand. If we set A = 3/4 and B = −(sin 3◦)/4,

then we recover (7). Using the Tartaglia–Cardano technique, it follows that one of the
solutions must be

x = 3

√√√√−sin 3◦

8
+
√

sin2 3◦

64
− 1

64
− 3

√√√√sin 3◦

8
+
√

sin2 3◦

64
− 1

64
. (11)
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Before we declare victory and call this value “sin 1◦,” recall that (7) has three real
solutions, so this x might be one of the other values. Unfortunately for us, numerically
evaluating the expression in (11) on a calculator gives

x ≈ −0.009 + 0.015 i

where i denotes the so-called imaginary number, i.e., i = √−1. That is, the x given by
(11) is not even a real number, much less one of the solutions to our depressed cubic
equation, and much much less our elusive sin 1◦!

Where did we go wrong? With a little algebra, we can rewrite (11) as

x =
3
√

− sin 3◦ +
√

sin2 3◦ − 1 − 3
√

sin 3◦ +
√

sin2 3◦ − 1

2

=
3
√− sin 3◦ + i cos 3◦ − 3

√
sin 3◦ + i cos 3◦

2
(12)

and the involvement of the imaginary number becomes jarringly apparent.
The Tartaglia–Cardano method occasionally involves extracting the cube root of

complex (i.e., imaginary) numbers. Although both mathematicians knew this, neither
they nor their algebraic successors knew how to make sense of them. No algebraist of
their time knew how to systematically compute the cube root of an imaginary number.
No algebraist even knew what a cube root of an imaginary number meant!

The complex arithmetic of sine one degree
The problem of the imaginary cube roots would not be resolved until later in the 18th
century, when mathematicians finally looked past the bizarre arithmetic of imaginary
numbers and found very real geometry working behind the scenes. A wonderful history
of the de-mystification of imaginary numbers can be found in [10].

The essential idea—indeed, the typical starting point for a modern discussion of
complex arithmetic such as [3] or [11]—is to equate a complex number such as
z = 2 + 3i with a position vector in the plane, here �z = 〈2, 3〉. In particular, the infa-
mous “imaginary” number is nothing more than the (second) standard basis vector
〈0, 1〉.

Not only does this identification put the complex numbers squarely in the “real”
universe, but it provides some geometric insight into the arithmetic of complex num-
bers. For example, addition of complex numbers is the same as the usual addition of
vectors save for a change of notation:

(2 + 3i) + (4 + i) = 6 + 4i ⇐⇒ 〈2, 3〉 + 〈4, 1〉 = 〈6, 4〉.

Of course, it was not the additive properties of complex numbers that befuddled
mathematicians; it was their multiplicative habit of squaring to negative numbers.
Remarkably, viewing complex numbers as vectors gives a simple geometric descrip-
tion of complex multiplication as well. To see it, imagine for a moment we have a
complex number z, which we represent as a vector. If z has length r and direction
angle θ (measured from the positive x-axis), it can be written as

z = 〈r cos θ, r sin θ〉 = r cos θ + i r sin θ
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using (modern) trigonometry. Consider a second complex number (or plane vector,
whichever you prefer) w = s cos ϕ + i s sin ϕ and compute the product zw by expand-
ing the terms and recalling that i2 = −1:

zw = (r cos θ + i r sin θ)(r cos ϕ + i r sin θ)

= rs(cos θ cos ϕ − sin θ sin ϕ) + i rs(sin θ cos ϕ + cos θ sin ϕ).

That may not look like an improvement, but the expressions in parentheses are
precisely the angle addition formulas for sine and cosine! That means

zw = rs cos(θ + ϕ) + i rs sin(θ + ϕ),

that is, zw is a vector of length rs that makes a θ + ϕ angle with the positive x-axis.
Said differently, to multiply two plane vectors as complex numbers, we multiply their
lengths and add their direction angles.

This simple geometric description gives a nice explanation of why the product of
two negative real numbers is a positive one: Every negative number makes an angle
of 180◦ with the positive x-axis, so when they are multiplied together their angles are
added to obtain 360◦, yielding a vector pointing in the direction of the positive x-axis.
(Can you now see why it also shows that i2 = −1?)

Perhaps more germane to our problem, it also explains how complex cube roots
work. If z is a complex number with vector magnitude r and direction angle θ , then z3

is a vector with magnitude r3 and direction angle 3θ . Hence, to find a complex number
that cubes to 8i , we need only a vector whose length cubes to 8 (i.e., the length of 8i)
and whose angle triples to be coterminal with 90◦ (i.e., the angle of 8i). Obviously, a
vector of length 2 and angle 30◦ should work, so that

2 cos 30◦ + i 2 sin 30◦ =
√

3 + i

is a cube root of 8i . The reader is encouraged to cube this by algebraic expansion to
see that it does indeed equal 8i .

However, unlike the case for real numbers, this is not the only cube root. For
example, a vector of length 2 and angle 150◦ would cube to a vector of length 8 and
angle 450◦ which is coterminal to 90◦. Thus,

2 cos 150◦ + i 2 sin 150◦ = −
√

3 + i

is another cube root.
Are there other cube roots as well? If so, they would need an angle θ that, when

tripled, is coterminal with 90◦. If we solve equation 3θ = 90◦ + 360◦n, we find
θ = 30◦ + 120◦n. For n = 0, we recover our first cube root; for n = 1, we recover our
second one. If n = 3, we find θ = 270◦, whence

2 cos 270◦ + i 2 sin 270◦ = −2i

is a third cube root (one we probably could have guessed at on our own). Continuing
on, for n = 3, we again recover

√
3 + i again, therefore we can conclude that there

are exactly three cube roots to 8i , each of which is rotated exactly 120◦ from the other
two.

This conclusion holds in general: Every nonzero complex number z has three
distinct cube roots. This collection of three roots is denoted z1/3 and this is called the
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algebraic cube root of z. Of the three, the root with the minimum direction angle (in
absolute value) is called the principal cube root and is denoted 3

√
z. In the example

above, we would have

(8i)1/3 =
{√

3 + i, −
√

3 + i, −2i
}

whereas 3
√

8i =
√

3 + i.

That complex numbers have multiple cube roots explains precisely the problem we
faced in our algebraic determination of sin 1◦. When a modern calculator computes
a complex cube root, it determines only the principal root. This is why the algebraic
solution in (11) failed—the cube roots we demand of the solution are not necessarily
the principal cube roots. If we return to our discussion of the solution to the depressed
cubic equation (7), we realize that instead of (12), a more accurate description of the
Tartaglia–Cardano solution is

x ∈ (− sin 3◦ + i cos 3◦)1/3 − (sin 3◦ + i cos 3◦)1/3

2
. (13)

Unfortunately, this no longer defines a single value, but rather nine different values,
three for each cube root. How do we sift among them to find the value sin 1◦?

One approach is to graph the nine complex numbers described in (13). For conve-
nience, define

z = − sin 3◦ + i cos 3◦ and w = sin 3◦ + i cos 3◦

so that x ∈ (z1/3 − w1/3)/2. By the co-function property, z = − cos 87◦ + i sin 87◦

also, a unit vector that makes an 87◦ angle with the negative x-axis. Thus, z makes a
93◦ angle with the positive x-axis so its three cube roots will be unit vectors that make
angles of 31◦, 151◦, and 271◦. That is,

z1/3 =
⎧⎨
⎩

cos 31◦ + i sin 31◦,
cos 151◦ + i sin 151◦,
cos 271◦ + i sin 271◦

⎫⎬
⎭ .

The relationship is shown in Figure 4 left, with z appearing in red/bold. A similar
argument shows

cos 151° + isin151°  cos29° + isin29°   

cos 149° + i sin 149°

cos 269° + i sin 269°

cos 31° + i sin 31°

cos 271° + i sin 271°

– cos 87° + i sin 87°

Figure 4. The cube roots of z and w.
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2 sin 1°
2 sin 1°

2x

Figure 5. Rotating the erroneous solution to get sin 1◦.

w1/3 =
⎧⎨
⎩

cos 29◦ + i sin 29◦,
cos 149◦ + i sin 149◦,
cos 269◦ + i sin 269◦

⎫⎬
⎭ .

These vectors appear in Figure 4 right in red/bold, together with the three cube roots
of z for comparison.

On the one hand, the expression z1/3 − w1/3 can represent any of the vectors formed
as a vector difference of one of the three vectors representing z1/3 with one of the vec-
tors representing w1/3 or, equivalently, any vector connecting a w1/3 vector with a z1/3

one. Of the nine such arrows, exactly three of them are horizontal, shown in Figure 5
left. These vectors represent three real numbers, two positive and one negative, consis-
tent with the graphical information we found in Figure 3. In fact, the bottom-most real
vector, formed by connecting the two cube roots located exactly 1◦ on either side of
the negative y-axis, is the base of an isosceles triangle with equal sides length 1, thus
the base length is 2 sin 1◦ by (1).

On the other hand, the expression 3
√

z − 3
√

w, which equals twice our original erro-
neous Tartaglia–Cardano solution x from (11), represents exactly one vector: the dif-
ference between the two principal cube roots. As these two roots are both located in
the first quadrant, it follows that 2x is the small vector connecting the tip of 3

√
w to the

tip of 3
√

z, illustrated in Figure 5 right. Since each cube root of z (or w) is a rotated
copy of the principal cube root, we need only rotate 2x clockwise 120◦ to make it
horizontal, and hence match 2 sin 1◦ exactly.

Using the geometry of complex multiplication, this means we need only mul-
tiply the incorrect x in (12) by cos(−120◦) + i sin(−120◦) to obtain the desired
value:

sin 1◦ =
(

−1

2
− i

√
3

2

)
x

2

= 1 + i
√

3

4

(
3
√

sin 3◦ + i cos 3◦ − 3
√− sin 3◦ + i cos 3◦

)
.
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Using the explicit formula for sin 3◦ given in (4) and the Pythagorean identity, we can
finally express the exact value of sin 1◦. Replacing i by

√−1, we can then write sin 1◦

in terms of radicals and integers as

1 + √−3

8

⎛
⎜⎜⎝ 3

√√√√√√
(
√

5 − 1)
√

2 + √
3 − √

2
√

5 + √
5
√

2 − √
3

+
√(

(
√

5 − 1)
√

2 + √
3 − √

2
√

5 + √
5
√

2 − √
3
)2

− 64

− 3

√√√√√√
(1 − √

5)
√

2 + √
3 + √

2
√

5 + √
5
√

2 − √
3

+
√(

(
√

5 − 1)
√

2 + √
3 − √

2
√

5 + √
5
√

2 − √
3
)2

− 64.

⎞
⎟⎟⎠ (14)

Epilogue
The expression (14) is an eyeful, but the complex approach can suggest other radical
expressions for sin 1◦. It is clear that

(cos 1◦ + i sin 1◦) − (cos 1◦ − i sin 1◦) = 2i sin 1◦.

However, using the properties of complex roots, we can also conclude that

cos 1◦ + i sin 1◦ = n
√

cos n◦ + i sin n◦

for any n with 1 ≤ n ≤ 90 where we are using the principal nth root. Combining these
two observations, it follows that

sin 1◦ = 1

2i

(
n
√

cos n◦ + i sin n◦ − n
√

cos n◦ − i sin n◦
)

for any n with 1 ≤ n ≤ 90. This provides an unusual way to compute sin 1◦ in terms
of radicals of trigonometric functions at angles we may already know.

For example, n = 3 gives (14) in slightly rearranged form and n = 30 yields

sin 1◦ = 1

2
√−1

⎛
⎝ 30

√√
3 + √−1

2
− 30

√√
3 − √−1

2

⎞
⎠ ,

which is at least prettier to look at. Using n = 45 gives the similarly concise

sin 1◦ = 1

2
√−1

⎛
⎝ 45

√
1 + √−1√

2
− 45

√
1 − √−1√

2

⎞
⎠ .

Perhaps the most exotic description for sin 1◦ comes from the extreme case n = 90,
for which the cosine term vanishes and the sine term becomes 1:

sin 1◦ =
90
√√−1 − 90

√
−√−1

2
√−1

,

which, in addition to being delightfully bizarre and strangely beautiful, has the added
bonus of being true.
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Summary. Ostensibly a derivation of an algebraically exact formula for the value of the sine
of 1 degree, we present this calculation as a “historical romp” looking at the problem through
the tools of geometry, then algebra, and finally complex analysis. Each one of these approaches
gets the reader nearer to the correct value, but also serves to frame a vignette of surprising or
beautiful mathematics.
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