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PREFACE 

It was decided in 1973 that the Mathematical Association of America 
would commemorate the American Bicentennial at the San Antonio meet-
ing of the Association in January, 1976, by stressing the history of Ameri-
can mathematics. 

Some speakers were invited to trace American mathematical history 
from Colonial Times to the present. Others were selected to address the 
meeting on various topics of historical interest to the broad mathematical 
community represented by the membership of the Association. 

In addition to the major historical addresses, there were panel discussions 
on Two-Year College Mathematics in 1976; Mathematics in Our Culture; 
The teaching of Mathematics in College: A 1976 Perspective for the Future; 
and The Role of Applications in the Teaching of Undergraduate Mathema-
tics. 

In 1975, the thought began to emerge that the collection of addresses 
and panel discussions should be published by the Association. A committee 
was formed to undertake this publication. That committee was composed 
of Professors Edwin F . Beckenbach, Leonard Gillman, Judith Grabiner, 
and David Roselle, with the present writer as Chairman. Each of these 
members has played an important role in developing the present volume. 

Dirk Struik's paper appeared earlier in Men and Institutions in Ameri-
can Mathematics, Texas Tech University Graduate Studies, No. 13, Lub-
bock (1976), and is included here, with permission of Texas Tech Univer-
sity, for the sake of completeness. Mark Kac's paper, "Probability Theory: 
Reflections on the Past and Speculations on the Fu tu re , " is, unfortunately, 
unobtainable for inclusion in the present volume. The address of Paul 
Haimos, et al., has already appeared in The American Mathematical 
Monthly, 83 (1976), pp . 503-516. 

D A L T O N T A R W A T E R 

V 
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MATHEMATICS IN COLONIAL AMERICA 

Dirk J. Struik 

The history of mathematics can be presented in different ways. One is 
the "skyline" route, in which one concentrates on the high points: the 
great mathematicians and the great discoveries. This is the way most books 
on the subject are organized. Another way is the development of mathe-
matics as a social phenomenon, as an aid to physics, astronomy, and other 
sciences, or as the subject of education; here one can study also its influence 
on the general world outlook of a generation, a class, or a special group of 
men. 

The "skyline" approach to this period does not lead us very far. The 
histories of mathematics do not deal with it. The searcher for a path to the 
skyline can find some satisfaction in Franklin's magic squares, Adrain 's 
derivation of the normal error law, and Bowditch's discovery of the figures 
commonly named after Lissajous, but little more. The first time the skyline 
is reached is with Benjamin Peirce's Linear Associative Algebras (1870) or 
perhaps with some of the astronomical mathematics of G. W. Hill. 

More profitable is the other approach. In this case, it leads mainly to 
mathematics of use in astronomy, surveying, and hydrography. We shall 
confine our attention to North America, inclusive of Mexico. 

European mathematics came to the New World with Columbus in the 
form of computations with the decimal position system expressed in sym-
bols not very different from the ones presently used. More advanced math-
ematics came in the wake of the Conquest, as can be seen in the booklet 
written by Juan Diez, probably one of Cortes' chaplains; this booklet of 
1556 (reprinted in 1921) deals with assaying, but has some arithmetic and 
algebra suggestive of knowledge of Diez's contemporary, Cardan. Among 
the scholars in and around the University of Mexico, which opened in 
1553, one finds men with knowledge of surveying and navigation equal to 
that of the best contemporary Europeans. Outstanding is Enrico Martinez, 
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2 Dirk J. Struik 

a German, who, around 1600, excelled as an engineer, astronomer, linguist, 
and polymath in general; a kind of Mexican Stevin. He is remembered 
primarily for his labors on the drainage system of Mexico City, where there 
is a monument of him on the main plaza. Passing salute goes to Thomas 
Hariot, visitor to present North Carolina in the 1580's and author of a 
famous description and map of his discoveries in Virginia. He was a young 
man at the t ime; his fame as a mathematician came later, but had nothing 
to do with America. 

When, after 1600, the Atlantic coast of North America was being colo-
nized, there were many settlers with a university education, something 
often meaning no more, mathematically speaking, than some knowledge of 
the rule of three. Few of these men ever crossed the pons asinorum. (Euclid, 
Elements 15: The angles at the base of an isosceles triangle are equal . ) 
This also may have been true for the teachers at the two newly founded 
colleges, the Puritan one at Cambridge, and the Jesuit one at Quebec. 
Some Jesuits probably knew more mathematics, or at any rate did ap-
preciate it. In 1665 French born Martin Boutet, Sieur de St. Mart in , was 
appointed professor matheseos at the Quebec college. Here was taught a 
course in hydrography, including the mathematics deemed necessary for 
navigation, surveying, and cartography. The Jesuits were a little ahead of 
the Puritans in mathematics, but the Puritans were more receptive to new 
theories, willing to listen to Copernicus and Descartes and later to Locke, 
whereas Quebec preferred Aristotle. Both parties paid attention to formal 
logic, Quebec again adhering to Aristotle, Harvard more to Ramus (the 
Protestant educator of Paris); but at that time logic was not thought of as a 
mathematical discipline. 

Although I know of no published mathematical work of his, Carlos de 
Siguenza y Gongara (1645-1700) of Mexico, the poet-cartographer-astron-
omer-historian-polemicist, should be mentioned. 

The first at Harvard to show a deeper interest in mathematics was Thomas 
Brattle (1658-1713), merchant-astronomer, working "here alone by myself, 
without a meet help in respect to my studies," as he wrote to Flamsteed in 
1703. He had been able to cross the asses' bridge, and that done, he wrote 
that the rest of geometry came easy, and trigonometry followed. He used 
the telescope, a gift to Harvard in 1672 by John Winthrop II (son of the 
first governor of Massachusetts and later himself governor of Connecticut); 
his observations on the famous comet of 1680 were appreciated by Newton, 
and he may well have been the first to determine astronomically not only 
the latitude (already roughly known), but also the longitude of Boston by 
observing a lunar eclipse. In the same period, the position of Quebec was 
established astronomically in 1685 by the visiting French cartographer 
Jean Deshaies. The correct position of Mexico City was known at least 
from the middle of the seventeenth century, but it was not published; thus , 
until late into the eighteenth century, Mexico City was placed west of 
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Acapulco in the Pacific. The Spanish were not eager to inform other na-
tions about their empire. 

During the intellectual stagnation of the Spanish empire and the later 
revival stimulated by Carlos III , there was little interest in mathematics in 
eighteenth century Mexico. Quebec, and especially Harvard, however, were 
improving their appreciation of mathematics; the leading figures were 
Isaac Greenwood and John Winthrop IV. Father J. P. DeBonnecamps 
taught hydrography at Quebec between 1743 and 1758. There was also an 
intellectual group at Philadelphia, its Quaker atmosphere tolerant to new 
ideas; here, during the first half of the century, was the impressive James 
Logan, magistrate, botanist, physicist, author, and aristocrat; his cor-
respondence showed critical understanding of Huygens' dioptrics and of 
Newton's algebra and fluxions. A Pennsylvanian Maecenas, he encouraged 
the young mechanic Thomas Godfrey (of Godfrey's quadrant , predecessor 
of the sextant) and Benjamin Franklin. As a result of talking to Logan, 
Franklin set up his magic squares, first the 8 by 8, then the 16 by 16 one, 
although he thought them difficiles nugae (difficult trifles). Most people 
would not disagree with Franklin on this. 

Greenwood was the first Hollis professor of mathematics and natural 
philosophy (1728), a combination that lasted until the nineteenth century. 
He was the first teacher in America of Newtonian philosophy, giving lec-
tures with demonstrations of the "discoveries of the incomparable Sir Isaac 
Newton"; these lectures may well have included some algebra and fluxions. 
He wrote Arithmetic, Vulgar and Decimal (1729), the first separate treatise 
on arithmetic written by a native British-American. (The first still existing 
American arithmetic in English is part 2 of The Young Man s Companion, 
published as a second edition in 1710 by William and Andrew Bradford, 
New York. The first edition was in 1705.) He lost his Harvard job in 1737 
for "gross intemperance," and spent his later years as a traveling lecturer. 

John Winthrop IV, Greenwood's successor to the Hollis chair, was, 
luckily for Harvard and Newton's prestige, full of the social graces, and 
continued to teach in the Newtonian tradition until his death in 1779. His was 
primarily applied mathematics, especially astronomy, but he also taught 
pure mathematics, including fluxions. From a letter he wrote in 1764, it is 
known that , apart from hydrostatics, mechanics, optice, astronomy, he 
taught: " the elements of Geometry, together with the doctrine of Propor-
tion, the principles of Algebra, Conic Sections, Plane and Spherical Trigo-
nometry, with general principles of Mensuration of Planes and Solids, the 
use of globes, the calculations of the motions and phenomena of the heav-
enly bodies according to the different hypotheses of Ptolemy, Tycho Brahe 
and Copernicus . . . " as well as cartography, surveying, and navigation. 
Specialization was not an eighteenth century weakness. Winthrop 's library 
survives and reflects a good acquaintance with the mathematics of his 
t ime, except the continental mathematics of Leibniz and Euler. They had 
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to wait at Harvard until Farrar introduced them in the early nineteenth 
century. Winthrop was still a typical British scholar. He also was, accord-
ing to Count Rumford, who as a young man listened to some of his lec-
tures, "an excellent and happy teacher ." But his influence on the develop-
ment of mathematics in America seems to have been minimal . 

Another astronomer with mathematical interest was the self-taught 
clock-maker David Rittenhouse of Philadelphia, also an able surveyor. In 
later life he published some mathematical papers; the most interesting one 
(1793) deals with what he called " the sums of the several powers of the 
sines," that is, 

all in Newton's style of writing. This was new to Rittenhouse, and Newton 
apparently never published these sums, but the result is at least as old as 
Pascal. In another paper Rittenhouse (1799) used series for a solution to 
Kepler 's equation Μ = Ε - e sin E. 

DeBonnecamps ' mathematics also was applied. At Quebec College he 
taught hydrography and made astronomical observations with instruments 
less satisfactory than those available to Winthrop and Rittenhouse. One of 
his pupils was Michel Chartier de Lotbiniere, known as the architect of 
Fort Carillon, now Ticonderoga, built in the mathematical tradition of 
Vauban. Another fortress built in this school was Louisbourg. 

This brings one to the military engineers and that other group of men 
applying mathematics in their t rade: the scientifically trained surveyors 
and cartographers in French and British service. Well known in their days 
were Joseph Frederic Wallet des Barres, Samuel Holland, Bernard Romans, 
and William Gerard De Brahm, all active in the last decades of the eigh-
teenth century, the first two and especially des Barres, author of that 
famous cartographic work, The Atlantic Neptune (1780). Some of these 
men came from Europe and stayed, others returned after some years. 1 Joseph 
Bernard Chabert took accurate observations with the then modern method 
of lunar distances and eclipses of the Jupiter satellites along the North 
Atlantic Coast during 1750-51, with Louisbourg as base. He later returned 
during the American Revolution and, with the geodesic surveyor Jean-
Charles Borda, tested chronometers. From England came the most famous 

1. An aide-de-camp to Montcalm in the Canadian campaign of 1758-59 was young Louis-
Antoine de Bougainville, a protege of D'Alembert and already the author of a two-volume text 
on the integral calculus, at that time the best exposition of the continental approach. He 
returned to France and became famous as an explorer. Although he had no influence on 
American mathematics, he probably was the first one to set foot on North American soil with 
a thorough knowledge of continental mathematics. Think of him when you see bougainvilleas. 

• 0 
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surveyors of America's eighteenth century, Charles Mason and Jeremiah 
Dixon; they were active in the determination of the Pennsylvania-Delaware-
Maryland line. The influence of these men on the growth of interest in ap-
plied mathematics is difficult to estimate; it has been studied only in special 
cases, as in that of Mason and Dixon, and Pennsylvanian surveyors. The 
same holds for the foreign observers of the transit of Venus in 1769, al-
though it is known that the participation of the Abbe Jean-Baptiste Chappe 
in the California expedition had some influence on Mexican science. 

The new republic had several colleges (Harvard, Yale, William and 
Mary, Pennsylvania, Princeton, Rutgers, Bowdoin) and many academies. 
The college in Quebec had disappeared with the Conquest and the ex-
pulsion of the Jesuits; the latter event also was harmful to the instruction of 
science in the Spanish Empire. (However, only the mathematics of the young 
United States will concern us here.) The colleges in the U.S.A. showed 
little interest in mathematics. Harvard, in 1803, required for entrance the 
mere rudiments of arithmetic; in 1816, the whole of elementary arithmetic; 
and in 1819, a light knowledge of algebra. Not until 1837 was arithmetic 
dropped from the freshman course. The situation in other colleges was not 
much better. However, after 1800 some good teachers appeared and gal-
lantly engaged to raise the level of mathematical knowledge. Irish born 
Robert Adrain (1775-1843), who taught at Columbia, Philadelphia, Prince-
ton, and Rutgers; New England born John Farrar (1779-1856), who mod-
ernized mathematical instruction at Harvard; Theodore Strong, who taught 
at Rutgers, and some French teachers such as Claude Crozet at West Point 
represented a new element in American mathematics: the influence of 
France and its Revolution. 

All through colonial days, the only European influence had been that of 
Great Britain with its strict Newtonian tradition. With the American Revo-
lution came the admiration of, or at any rate the interest in, France and its 
advanced mathematical schools. When, under Jefferson's influence West 
Point was established, the Paris Ecole Polytechnique, with its emphasis on 
mathematics, served as example. Strong, Farrar , and Crozet brought French 
mathematical texts to the attention of their students. It was Farrar , since 
1807 the occupant of the Hollis chair at Harvard, who introduced into his 
instruction French material through English versions or translations. Be-
tween 1818 and 1829, he introduced presentations of material by Lacroix, 
Legendre, Bezout, Biot, and Euler, beginning with Lacroix's Elements of 
Algebra. At West Point, Crozet taught descriptive geometry, Monge's 
brain child. 

Legendre's Elements de geometrie, first published in 1794 as a then 
modern approach to Euclid, was one of the most influential textbooks of 
the period. It was translated several times into English, first by Farrar in 
1819; another translation, brought out anonymously by no other than 
Thomas Carlyle during his early years (ca. 1820), was very successful in a 
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revision of 1828 by the West Point professor Charles Davies (1798-1876). 
Davies wrote many other textbooks, among them Analytical Geometry, an 
English version of a book written by Pierre Bourdon. In 1843-44 Harvard 
first made geometry a requirement for admission, this through the in-
fluence of Benjamin Peirce (1809-1880), professor since 1833 and a prolific 
writer of textbooks, beginning in 1835 with a Treatise on Plane Trigonom-
etry. 

But it was Laplace, in particular through his Mecanique Celeste (5 vols, 
1799 to 1825), who stimulated the awakening creativity of American mathe-
maticians, as shown in the works of Adrain and Nathaniel Bowditch (1773-
1838). Adrain 's best known paper, with the derivation of the normal law of 
errors (1808), was inspired by Laplace, and so were his articles on the 
shape of the earth. Bowditch, a Salem merchant-skipper and after 1823 a 
well-to-do Boston insurance executive, showed his dedication to Laplace by 
commenting on and translating the first four volumes of Mecanique Celeste 
into English (1829 to 1839), a labor of love paid for from his own pocket. 

Among Bowditch's original work can be mentioned a paper suggested by 
the apparent motion of the earth as seen from the moon. Here he found 
the figures now known as those of Lissajous. It was published in 1815 in 
the "Memoirs" of the American Academy of Arts and Sciences founded in 
1780 in Boston. This shows that the time had come when mathematical 
papers could be published in an American periodical. The first such peri-
odical was the Transactions of the American Philosophical Society, estab-
lished at Philadelphia and first published in 1771. Yet all through the first 
half of the nineteenth century and even later there were few such periodicals. 
Several at tempts to publish such journals, even on a modest scale, had 
little success, from Adrain 's The Analyst of 1808 (with his paper on errors) 
to The Cambridge Miscellany of Mathematics, Physics and Astronomy, 
started in 1842 by the Harvard men Benjamin Peirce and Joseph Lovering. 
The time had not yet come for a deeper interest in mathematics in the 
many academies and the growing number of colleges. 

A few other names of some importance in these first decades of the 
nineteenth century should be mentioned. Benjamin Banneker (1731-1806), 
a Maryland astronomer, and a friend of the Ellicott family of merchants 
and surveyors, was the first black man in America to achieve distinction in 
science. Charles Gill, a Yorkshire man who came to America in 1830 at the 
age of 25, was a teacher and an actuary; he edited a periodical Mathe-
matical Miscellany (Flushing, New York, 1836-39) and made several con-
tributions to number theory. Of great importance for the U . S . Coast Survey 
after 1816 was Swiss-born Frederic Hassler, and for the mathematics in-
struction at the Naval Academy after 1845, William Chauvenet. Other 
names can be found in A History of Mathematics in America Before 1900 
by Smith and Ginsburg (1944). Significantly, their chapter on the intro-
duction of modern mathematics into the United States deals with the 
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period of 1875 to 1900, long after our period has come to an end. Our 
period deals with the British influence, typical of the colonial era, and the 
French, typical of the mercantile and early industrial period of the Re-
public. The period 1875 to 1900 is that of the German influence, and of 
developed industrialism after the Civil War . 
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MATHEMATICS IN AMERICA: THE FIRST HUNDRED 
YEARS 

Judith V. Grabiner 

1. Introduction. The hundred years after 1776 were good years for mathe-
matics. In France, there were Lagrange, Laplace, Cauchy; in Great Britain, 
Cayley, Hamilton, Sylvester; in Germany, Gauss, Riemann, Weierstrass. 
Of course we recognize these names at once. But a comparable list of 
American mathematicians from 1776 to 1876 might draw puzzled looks 
even from an American audience. The list would include Nathaniel Bowditch 
(1773-1838), best known as author of the American Practical Navigator 
(1802) but who also published a four-volume translation and commentary 
on Laplace's Mecanique Celeste;1 Theodore W. Strong (1790-1869), who 
proved some theorems about circles in the early 1800's; 2 Robert Adrain 
(1775-1843), who published some work on least squares and on the normal 
law of error , 3 and a host of astronomers, geodesists, surveyors, almanac 
makers, teachers of mathematics—and one president, Thomas Jefferson, 
who helped design quite a good mathematics curriculum for the University 
of Virginia. 

To be sure, Benjamin Peirce (1809-1880) of Harvard published a major 
work in pure mathematics, the Linear Associative Algebra, but though 
he distributed a hundred copies of it in 1870, it was not actually published, 
and recognized in Europe, until 1881. In fact, in the period before 1876, 
Peirce was better known for his work in physics, astronomy, and geodesy 
than for his algebra, and was not yet seen as a towering figure on the purely 
mathematical scene. J. Willard Gibbs (1839-1903), the American mathe-
matical physicist, is recognized now as the father of vector analysis, but 
his lectures on vector analysis at Yale did not begin until 1881. In the first 
hundred years of the republic, then, no American was an outstanding 
leader in world mathematics. 

This bleak situation was widely recognized at the time, both inside and 
outside the United States. In 1816, for instance, the French philosopher 
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Auguste Comte was told not to go to the United States because mathematics 
was not appreciated there; even Lagrange, had he gone there, could have 
found employment only as a surveyor, Comte was to ld . 4 In 1840, in a 
survey of American higher education undertaken for the Corporation of 
Brown University, the authors lamented, " W e have now in the United 
States. . .a hundred and twenty colleges....All teach mathematics , but where 
are our mathemat ic ians?" 5 In 1873, the English mathematician and 
historian of mathematics Isaac Todhunter observed of the United States 
that 

with their great population, their abundant wealth, their attention to 
education, their freedom from civil and religious disabilities, and their 
success in literature, we might expect the most conspicuous eminence 
in mathematics. 

Nevertheless, he said, 

I maintain that, as against us, their utmost distinction almost vanishes.6 

Yet somehow, despite these modest beginnings, by the 1890's American 
mathematics was alive and well. Indeed, it was growing at a furious rate . 
In a count of American items listed in the German review journal Jahrbuch 
über die Fortschritte der Mathematik, there are four items in 1868, 32 in 
1875, 43 in 1877. The number of American articles in one field, algebra, 
reviewed in the Jahrbuch between 1890-1900, is double that for the preceding 
decade. 7 By the end of the nineteenth century, the work of Americans was 
known and respected throughout the mathematical world. 

The situation I have just described raises the two main questions I shall 
discuss in this paper . First, why was American mathematics so weak from 
1776 to 1876? Second, and much more important , how did what happened 
from 1776-1876 produce an American mathematics respectable by inter-
national s tandards by the end of the nineteenth century? We will see tha t 
the "weakness"—at least as measured by the paucity of great names—co-
existed with the active building both of mathematics education and of a 
mathematical community which reached maturity in the 1890's. 

Before we begin answering these questions, let us introduce a useful 
chronological framework for the period to be discussed. From the Revolu-
tion to about 1820, we will find comparatively little mathematical activity. 
From about 1820 to the 1850's, we will find an interest in improving mathe-
matics education, and much work in applying mathematics to mapping 
the new continent and the waters off its coast. Finally, from the 1850's 
to the 1890's, we find a major commitment by an emerging industrial 
America to a strengthening of the sciences—a strengthening process in 
which mathematics fully participated. 

We will begin by surveying the sciences in general in the nineteenth-
century United States. But we will concentrate on what was most important 
to mathematics . 
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2. Science in nineteenth-century America. The nineteenth century in 
general was a great one in the history of science: the century of Faraday 
and Maxwell, of Helmholtz and Mendeleev, of Darwin and Pasteur. None 
of these giants of nineteenth-century science was an American. The condi-
tions for scientific research in the United States were relatively poor, for 
reasons peculiar to American history. First, "knowledge for its own sake" 
was not much valued in nineteenth-century America, and this remains 
true throughout our hundred-year period. For instance, in 1832, one 
American, James Jackson, denied his physician son permission to spend 
several years studying science before setting up practice. He said: 

We are a business-doing people. We are new. We have, as it were, but 
just landed on these uncultivated shores; there is a vast deal to be done; 
and he who will not be doing, must be set down as a drone." 

The astronomer Simon Newcomb, as late as 1874, observed: 

However great the knowledge of the subject which may be expected in 
a professor, he is not for a moment expected to be an original investi-
gator, and the labor of becoming such, so far as his professional position 
is concerned, is entirely gratuitous. He may thereby add to his reputation 
in the world, but will scarcely gain a dollar or a hearer at the university.' 

Because of attitudes like those just described, scientists could often find 
neither financial support for research nor the time to do it. When physicist 
Joseph Henry taught at Albany Academy in the 1830's, he taught seven 
hours a d a y . 1 0 As late as the 1880's, twenty hours a week was a common 
teaching load for professors of mathematics even in major colleges and 
universities. 1 1 

Other characteristic American attitudes also worked against science. 
For instance, after the Revolution, the newly independent Americans at 
first prized their isolation from Europe—not the best way to be part of 
a world scientific community. Moreover, science was sometimes seen as 
anti-democratic; after all, science is done by an elite, not by the common 
m a n . 1 2 Finally, and most important , while a central government in Europe 
might support science, the United States government was not automatically, 
by analogy, the patron of science, for federal patronage raised the issue 
of states' rights. In fact, though the U .S . government did sponsor scientific 
work when there was an apparent national need to be met, the states' rights 
issue long served to block the founding of any permanent federal scientific 
institution in the United S ta tes . 1 3 

Even with these atti tudes, however, American natural science from 1776 
to 1876 was stronger than its mathematics . The U .S . may point with pride, 
for instance, to the botanical work of John Torrey and Asa Gray; the physics 
of Joseph Henry; the founding of the science of oceanography by Matthew 
Fontaine Maury; and to the existence of a flourishing community of re-
searchers in fields like geology, natural history, astronomy, and meteorology. 
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The state of mathematics would, then, seem to have been exceptionally 
low, and we must investigate why whatever promoted the natural sciences 
in nineteenth-century America did not equally encourage mathematics . 

There were, first, two widely shared philosophical attitudes in America 
in the first half of the nineteenth century which supported the doing of 
science, if not of mathematics: Natural Theology and the Baconian phi-
losophy. 1 4 Natural Theology is the doctrine that we may demonstrate the 
glory of God by discovering the laws of nature; indeed, the existence of 
natural laws proves the existence of an intelligent creator—God. The doctrine 
of Natural Theology was part of the world-view of the Puritans, and greatly 
influenced the colleges of New England in the seventeenth and eighteenth 
centuries. The doctrine was shared by the Founding Fathers, as reflected 
in a phrase in the Declaration of Independence: "Nature and Nature 's 
God . " Natural Theology, with its religious connotations, was a popular 
motive for doing science in nineteenth-century America; unfortunately, 
however, looking for the glory of God in nature is more encouraging to 
the natural sciences than it is to research in mathematics. 

The Baconian philosophy, based on the work of the seventeenth-century 
philosopher Sir Francis Bacon, stressed three things: first, the importance 
for science of collecting facts; second, a de-emphasis of, and indeed con-
demnation of, all-encompassing theories; and, third, the application of 
science for improving human life. This philosophy was especially congenial 
to nineteenth-century Americans, both inventors and explorers. In nineteenth-
century America, the popularity of the Baconian spirit encouraged the 
collection of vast amounts of data, especially significant for astronomy and 
for the biology and geology of a not-yet-explored continent. Baconianism, 
however, was not especially hospitable to work in mathematics, nor, indeed, 
to theoretical science in general. 

Both Natural Theology and Baconianism were attitudes toward science 
that the United States had inherited from England. And we should note 
that another factor discouraging mathematics in the United States was the 
great influence of English thought , an influence especially marked in the 
period before 1820. England in the eighteenth and early nineteenth cen-
turies, though producing notable work in the sciences, was quite weak in 
mathematics. One reason was the English devotion to Newtonian methods— 
even to notation in the calculus!—methods which by 1800 had been super-
seded on the Continent by the work of Euler, Lagrange, and Laplace. 
Another, related reason for England's mathematical weakness was the 
complete lack of advanced mathematics teaching at English universities. 1 5 

Thus England, which might have served as a source both of inspiration 
and of textbooks, provided little help to American mathematics . 

Nevertheless, there were major forces encouraging American science 
which also promoted mathematics. A principal impetus for scientific re-
search in nineteenth-century America was the desire to explore, understand, 
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and subdue the new land. Just as geologists and biologists were needed to 
learn about the vast continent and its inhabitants , so people knowing 
mathematics were needed for the exploration: especially to map the coast-
line and the interior, and to make the astronomical calculations necessary 
for accurate mapping. National pride contributed also; there was a strong 
desire not to be dependent on foreign maps and charts for American navi-
gation, for ins tance , 1 6 and there was even a proposal made to run the prime 
meridian through Washington. 

The way American needs could encourage mathematical work is illus-
trated by the career of the first post-revolutionary American mathematical 
figure, Nathaniel Bowditch of Salem, Massachusetts. Bowditch, a seaman, 
taught himself mathematics. His original motivation was to understand 
and improve navigation; one result was his American Practical Navigator, 
first published in 1802 and still being revised and reissued today. Bowditch's 
major work, however, was a translation and commentary on Laplace's 
Mocanique Coleste; the subject of celestial mechanics was one to which an 
interest in navigation led many nineteenth-century mathematicians. The 
commentary was far from trivial; the kind of work involved is illustrated by 
Bowditch's well-known statement: 

I never come across one of Laplace's "Thus it plainly appears" without 
feeling sure that I have hours of hard work before me to fill up the 
chasm and find out and show how it plainly appears. 1 7 

For the future of American mathematics, Bowditch's importance includes 
having engaged the young Benjamin Peirce to help him correct the proofs 
for the Laplace commentary, thus giving Peirce an introduction to European 
mathematical physics not then available in any American college. 

As Bowditch's interests illustrate, then, the need for accurate maps and 
charts promoted research in the mathematics related to these tasks: thus 
error theory, planetary theory, and celestial mechanics benefited. And in 
these areas, mathematical research was motivated not just by the altruistic 
desire to fulfill the needs of the nation, but by government funds. 

One government institution arising from the need for exploration was the 
United States Coast Survey. To head the survey, Jefferson—our most 
mathematical of presidents 1 8 —found Ferdinand Rudolf Hassler, a Swiss 
who had worked on the survey of the canton of Bern. Hassler insisted, as a 
man with European training would, on a sound scientific basis being laid 
for the work of the Survey. 1 9 His successors, first Alexander Dallas Bache 
(1806-1867), and then Benjamin Peirce, shared this strong scientific orien-
tation. The value of science and mathematics for the Survey is clear when 
we list the Survey's main tasks: the accurate surveying and mapping of the 
Atlantic Coast and Gulf of Mexico; mapping the Gulf Stream and second-
ary streams; determining the magnetic force, the depth of the ocean, and 
the nature of marine life, at various places; and precisely determining 
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longitudes by astronomical observation. The Survey, while doing these 
tasks, as a consequence performed others as well: it provided its mathe-
matically inclined employees with jobs related to mathematics , with a 
community to belong to , and with encouragement for work in the mathe-
matics related to geodesy and astronomy. Thus , though the Coast Survey 
provided no specific impetus for pure mathematical research, it helped build 
and support a group of professional, mathematically-oriented scientists for 
the United States. 

Another important institution arising from the needs of the new nation 
was the Nautical Almanac. Founded in 1849, its first head was Navy Lieu-
tenant Charles Henry Davis, both a veteran of the Coast Survey and a 
former student at Harvard. The major technical problem in compiling a 
nautical a lmanac is to determine planetary positions at specific times at 
pre-determined po in t s . 2 0 For this, the Nautical Almanac needed good 
astronomical observations, so Davis set up its headquarters in Cambridge, 
Massachusetts, which had Harvard College, a good telescope, and Profes-
sor Benjamin Peirce. Whatever the Navy may have expected, the atmo-
sphere at the Nautical Almanac office was not so much practical and mili-
tary as it was academic. Astronomer Simon Newcomb recalled how his 
going to work at the Nautical Almanac was entering the "world of sweet-
ness and l igh t . " 2 1 Besides Newcomb and Benjamin Peirce, notable Amer-
ican scientists who worked at the Nautical Almanac included philosopher 
Chauncey Wright; mathematical physicist George William Hill; astronomer 
Benjamin Apthorp Gould; future M. I .T . president J. D . Runkle; the 
woman astronomer from Nantucket, Maria Mitchell; and future Wesleyan 
president J. N. Van Vleck. In 1858, Runkle started a mathematical peri-
odical out of the Nautical Almanac office; called the "Mathematical 
Monthly," it lasted three years. Thus the Nautical Almanac not only aided 
the growth of the American mathematical community, it provided that 
community, at least for a t ime, with an instrument of communication. 

The military needs of the United States provided further occasions for 
the work of mathematicians, surveyors, and astronomers. For instance, in 
1848 Major William H. Emory, a West Point graduate with training in 
astronomy, led the Mexican Boundary Survey after the U .S . took the 
southwest from Mexico in the Mexican war. During the Civil War , Super-
intendent Alexander Dallas Bache made Coast Survey results available to 
the armed forces of the United States; and accurate Coast Survey data of 
Virginia in fact played a major part in the capture of Port Royal in 1861 by 
Captain Samuel F. Du P o n t . 2 2 

And, as the nineteenth century progressed, the applications of the mathe-
matical sciences in America began to extend beyond the calculation of 
planetary positions and the surveying of the United States. The sciences in 
general appeared useful both for military purposes and for the growing 
industries of the United States. The Civil War , for instance, encouraged 
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scientists to study explosives, ironclad ships, the telegraph, and medical 
statistics. In civilian life, industrialists, particularly those in railroads and 
textiles, saw a great need for technicians and technically trained manage r s . 2 3 

Also, the needs of American agriculture for a scientific—and thus more 
successful—basis were apparent . 

Technically trained people were few, however, except for West-Point-
trained engineers and the veterans of various surveys. Obviously more 
scientifically trained civilians were needed, and the place to get them was 
the educational system. Industrialists and government alike began to pro-
vide money for the educational system to produce such technically trained 
people. (Here developments in the United States parallel those in European 
industrial nations, especially Germany.) And the improvement of scientific 
education in the nineteenth century was especially significant for mathe-
matics, since of all the sciences in the nineteenth-century world, mathe-
matics—because it had become so technical—depended most on the educa-
tional system to produce competent practitioners. Indeed, outside the edu-
cational system it is difficult to become aware that mathematics—as op-
posed to its applications—can be a career at all. Thus the American educa-
tional system was absolutely necessary in generating mathemat ic ians . 2 3 3 

The teaching of mathematics in nineteenth-century America can best be 
understood by looking at the history of American higher education, es-
pecially the t rends in science teaching. Accordingly, we will return to the 
period 1780-1820 to trace that educational history. 

3. American higher education and mathematics: to 1850. Most American 
colleges in the seventeenth and eighteenth centuries had been intended to 
train ministers; by the early nineteenth century, however, this was no longer 
their primary function. College education was a gentleman's education, to 
produce a community of the educated. The educational theory which shaped 
the early colleges held that there was a pre-existing amount of t ruth , and 
that " the primary function of education was to get as much as possible of 
this corpus of Christian t ruth into the heads of the unde rg radua te s . " 2 4 If 
the amount of knowledge is fixed, there is no incentive for research. An-
other par t of prevailing educational theory was tha t education should 
provide "mental discipline" for the student. Both the idea of mental dis-
cipline and the idea of a fixed body of received knowledge justified the 
curriculum of these colleges: chiefly, the classics and mathematics; and 
also some logic, some moral philosophy, and some of what was called 
"natura l philosophy"—physics and astronomy. The scientific part of the 
curriculum was more oriented toward natural theology than toward practical 
application; in fact there was really no technical education, save at West 
Point, much before the middle of the nineteenth century. 

Choosing subjects which provided "mental discipline" did give mathe-
matics a greater share of the curriculum than the other sciences. The level 
of the mathematics taught , however, was not very high, especially when 
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English influence abounded before 1820. The mathematics usually taught 
in the colleges was arithmetic, elementary algebra, and the geometry of 
Euclid, with bits and pieces of surveying, trigonometry, or conic sections 
thrown in. Even elementary subjects were not always well taught . For 
instance, an instructor at Dar tmouth after the Revolution is supposed to 
have taught Euclid without proofs, telling his class, "If you doubt the 
truth of the theorems, read the proofs; but for [my] part [my] mind is 
sat isf ied." 2 5 Even for relatively advanced subjects, teaching was often by 
rote; in 1830, there was a student riot at Yale against the way mathematics 
was being taught, known as the "Conic Sections Revol t . " 2 6 Few colleges 
before the Civil War taught even calculus; almost none required it; and 
when it was taught the justification might still be "mental discipline." 
And—most important—the mathematics that was taught was part of a 
prescribed course of study which left no room for a student to specialize. 2 7 

Two things were necessary to improve college mathematics teaching: 
first, departure from the eighteenth-century English model; this was ac-
complished in the 1820's as part of a general wave of educational reform; 
second, a new stress on modern science and on a scientific and mathe-
matical curriculum which would meet the needs of a growing industrial 
society. This second development began at mid-century, but was not really 
completed until the 1890's. Let us now turn to these two changes. 

The old colleges and the education they provided changed because of 
pressures from American society. The United States, so self-consciously 
democratic, could not retain the idea of a "gentleman's educat ion" forever. 2 8 

A more practical orientation seemed more relevant to the needs of the 
nation. And, as the number of colleges multiplied, there was competition 
between them for students, which encouraged innovation in curriculum. 
One available innovation was to offer a richer program in science and 
mathematics. 

Both in the United States and in England, educational reformers brought 
French mathematics into college mathematics teaching in the early nine-
teenth century. In the United States, the development was encouraged by 
world affairs. In England after 1812, France was not popular, but in the 
United States after its War of 1812, it was England that was unpopular. 
French mathematics came into the United States through the textbooks 
used to teach mathematics and its applications at French military schools 
and at the Ecole polytechnique in Paris. The Ecole polytechnique had been 
founded during the French Revolution. Education at the Ecole polytechnique 
was intended to produce a polytechnicien, one with enough scientific 
knowledge to be able to apply it to a wide range of problems, and therefore 
one who knew some mathematics. 

In 1818, John Farrar , Professor at Harvard, began a project of translating 
French mathematics textbooks for American use. Unfortunately, the very 
latest French mathematics and physics of the 1820's, like that of Cauchy 
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and Ampere, were not included in Farrar ' s program, but even the eighteenth-
century works by men like Bezout, Biot, Lacroix, and Legendre on survey-
ing, trigonometry, algebra, and calculus were a great improvement over 
what had been taught in the colleges. The French works were both more 
up to date and more useful for the sciences. Farrar ' s work at Harvard was 
not unique; other schools began to teach French mathematics, and other 
professors undertook translations, notably Elias Loomis at Yale and Charles 
Davies at West Point. The availability of these new textbooks helped spark 
a much stronger mathematics program in many colleges. 2 9 

Just as important as New England colleges like Harvard and Yale in the 
history of mathematics education in early nineteenth-century America was 
the work of Sylvanus P. Thayer in reorganizing the curriculum at West 
Point, on the model of the French military schools and the Ecole poly-
technique. Besides Thayer, West Point had on its faculty Claude Crozet, a 
graduate of the ilcole polytechnique, and Charles Davies, whose transla-
tion of Legendre's introduction to geometry and trigonometry (known as 
Davies' Legendre) was one of the most widely used American mathematics 
textbooks of the nineteenth century. Because of Thayer, Crozet, and Davies, 
not only did West Point provide pre-Civil-War America with most of its 
mathematically trained surveyors and engineers—for instance, providing 
the Coast Survey with Superintendent Alexander Dallas Bache—but the 
influence of West Point's mathematical curriculum on American education 
after the 1830's was immense. The mathematics programs at many schools 
were developed by professors who were graduates of West Point, including 
the universities of South Carolina, Mississippi, and Virginia . 3 0 

By the 1840's, the colleges of the United States still did not provide a 
scientific education comparable to the best available in Europe. Neverthe-
less, many American college graduates now had respectable mathematical 
backgrounds. The colleges may not have produced mathematicians, but 
they did produce a generation of teachers of mathematics who could re-
spond to the new demands made around 1850 on the American educational 
system. 

4. Mathematics and science education: 1850-1900. By 1850, the rail-
roads, canals, bridges, roads, telegraphs were becoming major factors in 
the American economy. European research in agricultural chemistry was 
attracting American attention. Most educated Americans agreed that 
science was needed to improve industry and agriculture. Furthermore, 
research, to enlarge the amount of useful scientific knowledge, was also 
needed. All these things—the growth of industry, the settlement of the 
continent, and the consciousness of the importance of science—coincided 
with the growth of great fortunes in nineteenth-century America. Thus 
private wealth was available to finance education on a scale never before 
seen in the United S ta tes . 3 1 

In 1847, Abbott Lawrence, the textile magnate , founded the Lawrence 
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Scientific School at Harvard, hoping to produce graduates able to take 
their places in modern industry. At about the same t ime, a scientific school 
was founded at Yale. In 1861, it was named after Joseph Sheffield, who 
had funded it with his railroad holdings. The model of European poly-
technic institutes—Paris, Dresden, Freiburg—now influenced not only 
textbooks, but entire institutions; not only the scientific schools at Harvard 
and Yale, but also (among others) Rensselaer Polytechnic Institute, Brooklyn 
Polytechnic, and "Boston Tech ," later renamed M. I .T . 

The land-grant colleges, also, stressed instruction in the sciences. First 
chartered by the Morrill Act of 1862, the land-grant colleges, which were 
intended to teach scientific agriculture, eventually included universities like 
Michigan, Wisconsin, Minnesota, and Cornell, and the various Agricultural 
and Mechanical schools throughout the nation. The founding of all these 
schools meant that the sciences in general, and therefore mathematics in 
particular, were much more widely taught; and the curricula of the new 
schools influenced the older colleges too. Instruction was not always of the 
highest quality, since it was impossible to staff so many new schools at 
once with qualified teachers, and the science which was taught was some-
times narrowly vocational. Nevertheless, the scientific schools provided jobs 
for mathematicians and scientists, and also made possible a level of in-
struction that had not existed before. 

In the 1850's at the Lawrence Scientific School, mathematics and physics 
were taught by Benjamin Peirce. Peirce himself had worked under Farrar 
at Harvard and had assisted Bowditch in preparing his commentary on 
Laplace, so Peirce's mathematical roots are in the French mathematics of 
the eighteenth century. But Peirce taught , not eighteenth-century French 
science, but nineteenth-century European science, including the mathe-
matics and physics of Cauchy, Hamilton, Gauss , and Bessel—without 
doubt the most advanced mathematical curriculum ever yet seen in the 
United States. To a man , Peirce's students testify that his lectures, though 
inspiring, were impossible to follow. Nevertheless, he must have taught 
them something. His students included many of the most influential scien-
tists and mathematicians of the next generation. For instance, when Cornell 
in the 1880's developed a mathematics program of international stature, 
three leading men—Wait , Byerly, and later Oliver—were former students 
of Pe i rce . 3 2 Other Peirce students include astronomers Simon Newcomb, 
Edward Ellery Hale, and George William Hill; future Harvard Presidents 
Eliot and Lowell; future M. I .T . president J. D . Runkle; to say nothing of 
Peirce's sons, Harvard mathematics Professor James Mills Peirce, and the 
renowned philosopher and logician Charles Sanders Peirce. To be sure, 
Benjamin Peirce's mathematical curriculum was not home grown; his 
advanced mathematics and physics were learned from European sources. 
But his early education, and the financial and institutional support for his 
work—first French mathematics and physics, then the Nautical Almanac, 
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Coast Survey, and Lawrence Scientific School—were typical of the situation 
of mathematicians in the nineteenth-century United States. Benjamin Peirce's 
career illustrates also the way American mathematics gradually changed 
from the practical to the more theoretical. Though Peirce was best known 
in nineteenth-century America for his contributions to applied mathematics, 
he published, near the end of the century, the first major American contri-
bution to pure mathematics, his Linear Associative Algebra. This work, 
influenced by Hamilton's treatment of quaternions, gave methods of clas-
sifying and exhibiting all the linear associative algebras with a given, finite 
number of fundamental units, making use of the concepts Peirce developed 
of nilpotent and idempotent e lements . 3 3 And the first sentence of Peirce's 
work has ever since been quoted as a definition of pure mathematics: 
"Mathematics is the science that draws necessary conclusions." 

A similar pattern may be found in the career of J. Willard Gibbs. His 
father had been a professor of philology at Yale, and Gibbs grew up in the 
academic community of New Haven. His education was based on the Yale 
versions of French mathematics and its applications, and his thesis was in 
engineering: " O n the form of teeth of wheels in spur gearing." After re-
ceiving his P h . D . from Yale in 1863, however, Gibbs went to Germany to 
pursue his scientific studies, and moved there from engineering to mathe-
matics and physics. He returned to Yale to teach and to do research. But 
even at Yale, there was no support yet for a great research scientist— 
literally no support, because Gibbs ' professorship carried no salary. Only 
when Johns Hopkins offered him a job in 1880 did the Yale Corporation 
arrange that " a n annual salary be at tached to the chair of mathematical 
phys i c s . " 3 4 These difficulties notwithstanding, though, advanced scientific 
training at Yale, as at Harvard, produced students able to teach advanced 
mathematics and science. Yale's most illustrious mathematics student in 
the late nineteenth century was future University of Chicago professor 
Ε. H. Moore. Moore was at Yale in Gibbs ' t ime, but Moore's major pro-
fessor at Yale was mathematician Hubert Anson Newton, himself a Yale 
graduate , and it was Newton who made possible Moore's further education 
in Germany. 

Despite the illustrious careers of Peirce and Gibbs, however, not even 
the Lawrence and Sheffield schools were dedicated to scientific research. 
Even after the Civil War , specialized advanced study in the United States 
generally existed only for those preparing for professions, not for those 
wanting to pursue knowledge for its own s a k e . 3 5 As late as 1875, Charles 
Sanders Peirce complained that Harvard did not "believe in the possibility 
of any great advances in science . . . being made there , " thinking that " the 
highest thing it can be is a school . " 3 6 But with the intensified American 
interest in science, this situation could not last long, because in Europe 
there was a model not only for scientific subject-matter, but a model for 
the research institution—the German university. 
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Establishing university education in the United States was almost in-
evitable by the 1870's. Science-educated students from many American 
schools, sometimes with European post-graduate study, were available to 
staff universities; industrial fortunes were available to pay for them; the 
German model was there to inspire them. A key date is the centennial year 
1876, when the first research-oriented university in the United States was 
funded, from a characteristic source—the fortune in Baltimore and Ohio 
Railway stock of Johns Hopkins. Johns Hopkins ' first president, Daniel 
Coit Gilman, himself had a science degree from Yale. In fact, the presi-
dents of almost all the research-oriented universities of the late nineteenth 
century were trained as scientists: F . A. P. Barnard of Columbia, David 
Starr Jordan of Stanford, A. D . White of Cornell, G. Stanley Hall of Clark, 
and C. W. Eliot of Harva rd . 3 7 Some universities, like Clark and Chicago, 
were newly founded in this period; others, like Harvard and Yale, grew out 
of existing colleges. But whatever the immediate origin of an American 
university, the sciences were decisive in its development. 

The elective system, pioneered by Eliot at Harvard, was par t of the new 
university. The elective system strengthened mathematics in two ways. 
First, students did not have to study mathematics unless they wanted to , 
so the way was open for professors to teach more demanding courses. 
Second, students could deepen their knowledge in a chosen field—mathe-
matics, for instance—as much as they might desire. 

Of all the schools I have mentioned, the most important for American 
mathematics in the 1870's was Johns Hopkins. Because the Test Acts in 
Britain were not repealed until 1871, the eminent English mathematician 
J. J. Sylvester, who professed the Jewish religion, was not eligible for a 
chair at Oxford or Cambridge for much of his ca reer . 3 8 Since Sylvester was 
available after his retirement from the Royal Military Academy at Woolwich 
in 1870, President Gilman made him the first professor of mathematics at 
Johns Hopkins (not the only time American mathematics has profited from 
European religious restrictions). Sylvester built a research-oriented depart-
ment at Hopkins between 1877 and 1883 (before he returned to England to 
take the Savilian chair at Oxford newly vacated by the death of H. J. S. 
Smith). Sylvester's Hopkins students went on to teach mathematics and do 
research all over the United States. Two of them, Fabian Franklin and 
Thomas Craig, remained at Hopkins; others introduced modern mathe-
matical teaching to many leading American universities: for instance, 
George B. Halsted at the University of Texas; Washington Irving Stringham 
at the University of California at Berkeley; C. A. van Velzer at the Uni-
versity of Wisconsin. 3 9 

Sylvester was not just a teacher and researcher, but the nucleus of an 
American mathematical community. Accordingly, in cooperation with 
three Hopkins colleagues, William E. Story, Simon Newcomb, and physicist 
H. A. Rowland, and with Harvard professor Benjamin Peirce, Sylvester 
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founded the American Journal of Mathematics in 1878. Unlike earlier and 
shorter-lived American journals, the American Journal was neither a re-
pository of problems nor an instrument of education; its primary purpose 
was " the publication of original invest igat ions." 4 0 Among the articles in 
the first number of the journal were contributions by American mathe-
maticians at Hopkins, Cincinnati, Princeton, Pennsylvania, and Virginia; 
two papers from mathematicians in Canada; one from Lipschitz in Bonn; 
three from Cayley at Cambridge; two from W. K. Clifford in London. 
Among the first hundred subscribers to the new American journal are , of 
course, American colleges and the U . S . Coast Survey, but we also find on 
the list Charles Hermite; the University Library at Cambridge, England; 
and the library of the Ecole polytechnique in Paris—a sort of coming full 
circle, given the influence of the Ecole polytechnique on American mathe-
matical education. American mathematics was clearly on the world map . 
But Sylvester could not possibly have put it there all by himself, as his 
unsuccessful stay some thirty-five years before at the University of Virginia 
shows. Sylvester certainly helped, but , more important , there was by 1880 
an American mathematical community, centered at the leading colleges 
and universities as well as in government agencies. 

The level to which American mathematics had reached in the 1880's has 
been preserved for us by a survey taken for the United States Bureau of 
Education by Florian Cajori, then Professor at Tulane. The chief mathe-
matics instructional officers in each of 168 colleges and universities an-
swered his questionnaire. Though among the schools not responding were 
Harvard and Yale, the survey nevertheless provides us with a valuable 
"stop-action" picture of the change taking place in the United States from 
the mathematical education of the nineteenth to that of the twentieth century. 

Asked, "How many hours do you teach?" many report twenty hours a 
week, but answers on the order of " t en" appear also. Asked " W h a t else, 
if anything, do you teach?" 73 of the 118 who answered report teaching 
subjects outside of mathematics as well as mathematics; of these 73, 32 
report teaching outside the physical sciences altogether, including—in 
1888!—art, music, bookkeeping, languages, classics, history, and Bible. 
But 45 of the 118 say they teach only mathemat ics . 4 1 

More important, both the quantity and quality of mathematics teaching 
was increasing. As for the quantity, 112 schools reported that mathematics 
was elective. When asked, " I s the percentage of students electing higher 
mathematics increasing?" only three of the 112 report that the percentage 
is decreasing, 28 say no change, five say "yes" with qualifications, and 76 
say without qualification that the percentage is increasing. 4 2 

The increase in quality can be shown from the type of training now 
available even to those teachers of mathematics outside the universities, 
and by the encouragement to do research reported even by college faculty 
members . Thus , for example, professors at many colleges in 1888 report 
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having studied for a t ime at institutions providing excellent mathematical 
education like Johns Hopkins, Harvard, or Yale; and Τ. H. Safford, Field 
professor of mathematics and astronomy at Williams College—another 
former Benjamin Peirce student—reported that his professorship required 
him " to advance astronomical knowledge ." 4 3 

Finally, in response to the question " W h a t mathematics journals are 
t a k e n ? " 117 of the schools—in 1888!—list none. Eleven schools take only 
the American Journal; twelve more take only the Annals of Mathematics, 
which had been founded in 1884 by Ormond Stone (1847-1933) at the Uni-
versity of Virginia. But 28 schools take a number of mathematics journals, 
including the major European o n e s . 4 4 These 28 schools include most major 
state universities in the midwest and south, the Naval Academy, and private 
institutions like Northwestern, Vanderbilt, Columbia, and Johns Hopkins. 

Thus , though the mathematical s tandards of Hopkins, Harvard, Yale, 
and Columbia had not yet trickled down to all schools, the process was well 
under way. As late as 1904, it is t rue , 2 0 % of the members of the 
American Mathematical Society report having studied a b r o a d . 4 5 But this sta-
tistic, paradoxically, helps illustrate the strength of the new American math-
ematical community. The American university taught these students that 
European mathematics existed and what it was like; it taught them enough 
mathematics to benefit from the European training when they got it; and 
most important , it welcomed them back to use their European training to 
produce American Ph .D. ' s ready to be members of the world mathematical 
community. 

All these trends—economic, educational, and mathematical—came to-
gether in the founding by industrialist John D . Rockefeller of the University 
of Chicago in 1892. Under Ε. H. Moore, the mathematics depar tment at 
Chicago became the source of the first generation of American-trained math-
ematicians of world stature, whose careers will be described in Professor 
Birkhoff s paper; they included L. E. Dickson, O. Vehlen, G. A. Bliss, 
G. D . Birkhoff, and R. L. Moore. When in 1893 the International Congress 
of Mathematicians was held under the auspices of the new University at 
Chicago, invited papers were given not only by illustrious Europeans, but 
also by thirteen Americans. American mathematics had come of age and was 
now par t of the international mathematical community. 

In the 1890's, with the founding of the American Mathematical Society 4 6 

in 1888, the Bulletin in 1891, the University of Chicago in 1892, the Inter-
national Congress in 1893, Felix Klein's Evanston Colloquium of 1893, the 
Transactions in 1900, there was an explosion of mathematical activity in the 
United States. As we have seen, this explosion in American mathematics was 
not a creation out of nothing, not a sudden flowering out of previously barren 
soil. Its roots lie in the influx of French mathematics teaching in the 1820's; 
it was nur tured by government support for applied mathematics throughout 
the century, and by the increase in science education which began in the 



Mathematics in America: The First Hundred Years 23 

1850's; and it came to fruition in the universities of the 1870's, 1880's, and 
1890's. We may, then, proudly exhibit the institutions and the people that 
produced the flowering of mathematics in the United States at the end of the 
nineteenth century as the major achievement of American mathematics in its 
first hundred years. 
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SOME LEADERS IN AMERICAN MATHEMATICS: 
1891-1941 

Garrett Birkhoff 

1. Preface. On this bicentennial celebration of the founding of our 
nation, I am happy to pay tribute to the men most responsible for making 
our nation a world leader in mathematics. Some of these men have already 
told their own story in the two AMS Semicentennial volumes ([1], [2], [5]), 
covering a period 1888-1938 nearly identical with the half-century 1891-1941 
that I shall be discussing. What I can add to their first-hand accounts 
is primarily the perspective of a mathematician who was beginning his 
career at the end of this period, and who had the good fortune to know 
many leading American mathematicians of the period personally. 

I can also supply a few personal recollections of my father, George D . 
Birkhoff (1884-1944). Since a thorough and perceptive appraisal of G. D . 
Birkhoff s scientific work has been made by Marston Morse [6, vol i, pp . 
xxii-lvi], I shall emphasize here some human aspects of his career, insofar 
as I have been able to reconstruct it from our casual discussions, in the 
rosy light of hindsight. I have prepared these remarks with very special 
care and affection, as I do not plan to publish any other reminiscences 
about G. D. Birkhoff; I am sure he never intended me to be his biographer! 

Finally, I can recall some impressions of the Harvard community in 
which I have lived most of my life, as it was in my youth. I have often been 
asked to do this, and I hope that the disproportionate space that I have 
devoted to these impressions will not be misconstrued as an evaluation of 
Harvard's importance for American mathematics in that half-century, 
great as it undoubtedly was. 

American mathematics in 1891. Having made these apologies, let us 
recall briefly the state of American mathematics in 1891. Judith Grabiner 
has brought out clearly, if perhaps too humbly, the paucity of our nation's 
contributions to mathematics during the first century of its existence. She 
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has also described the beginnings of organized research during the period 
1876-1891. Two mathematical research journals were founded during these 
years: the American Journal of Mathematics at the Johns Hopkins Univer-
sity (JHU), under the editorship of J. J. Sylvester and Simon Newcomb; 
and the Annals of Mathematics, under the editorship of Ormond Stone at 
the University of Virginia. 

These journals and their influence were also analysed by Thomas Fiske 
(1865-1944), a founder of the New York Mathematical Society (NYMS) in 
1888, in his presidential address to the American Mathematical Society 
(AMS) in 1904.* He notes that of the 90 contributors to the first ten vol-
umes of the American Journal of Mathematics, thirty were foreign and 
"almost one-third of the remaining sixty were pupils of Professor Sylvester". 
Thus the distinguished research at the JHU in those years can hardly be 
regarded as indigenous! 

In the 1890's, the leadership of American mathematics was firmly cen-
tered in New York. Here the NYMS, soon to become the AMS, was bur-
geoning. It had 135 members in May, 1890; by year's end it had 210. These 
were not all pure mathematicians; forty per cent applied mathematics 
professionally to astronomy, physics, engineering, or actuarial work. In 
1891, these men founded the Bulletin of the New York Mathematical 
Society: A Historical and Critical Review of Mathematical Science. The 
Bulletin changed NYMS to AMS when our Society changed its name, but 
its nature did not change; and its official description as a "review" re-
mained on the cover until 1931. My narrative therefore begins with the 
founding of the Bulletin. 

The lack of emphasis in pure mathematics in nineteenth century America 
is not surprising. As President Lowell of Harvard (see §12) said in 1930:t 
"The great task of the United States in the nineteenth century was filling 
a continent and creating its industries. That of the twentieth should be 
raising its civilization to the highest level a t ta inable ." This level was, of 
course, exemplified by Western Europe at that t ime. As a result, the ambi-
tion to equal European culture was widespread and natural in our country. 
It was felt not only by university people, but also by wealthy philanthropists 
like John Nicholas Brown, Johns Hopkins, Daniel Marsh Rice, Leland 
Stanford, Andrew Carnegie, and Cornelius Vanderbilt, who made princely 
gifts to strengthen the great universities which perpetuate their names. 

By 1891, most of the greatest leaders in American mathematics of the 
pre-1941 era were already born. In the years of their boyhood, most Ameri-
cans put in long hours of hard physical labor to produce plentiful food, 
clothing, and housing. Automobiles were a curiosity, airplanes were un-

•Bull. AMS 11 (1904) 238-46. 
t A . L. Lowell, "At War with Academic Traditions in America," Harvard University Press, 

1934, p. 332. 
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known. Travel, a leisurely affair by railroad, steamship, and horse drawn 
carriage, was the privilege of the few. Communication was mostly by letter; 
even telephone service was a novelty. News was transmitted telegraphi-
cally; the radio was non-existent, and TV undreamed of. Though all these 
things were to become commonplace during the lifetimes of the men I shall 
talk about, our nation was very much a "developing country" of 60 million 
inhabitants in 1891. It had high literacy and many colleges, bu t very few 
graduate schools, and these had existed for only a few decades. Moreover, 
American culture was still regarded as quite provincial by most Europeans. 

However, the stage was set for the dramatic rise of American mathe-
matics to world leadership by 1941, and this rise will be my main theme. 
In 1891, most of the greatest leaders of the AMS during the decades 1921-
1941 were still boys. By the t ime they reached manhood, they felt the chal-
lenge to emulate the best in European mathematics , and they successfully 
met this challenge. The rest of my talk will be concerned with their per-
sonalities and accomplishments. I can only hope that the young mathema-
ticians of today will anticipate similarly the challenges of the next fifty 
years, and meet them as successfully! 

PROGRESS BEFORE WORLD WAR I 

2. The first AMS presidents-Φ As I have already said, of the 200-odd 
NYMS members listed in the Bulletin of November, 1891, forty per cent 
had at least partial professional responsibility for astronomy, physics, 
engineering, or actuarial work. Wha t is more striking, all five presidents of 
the NYMS-AMS in the 19th century were applied mathematicians or ad-
ministrators! 

Thus its first president was a popular college administrator (J. H. van 
Amringe, 1835-1916), whose early papers had dealt with life insurance. Its 
second president (John E. McClintock, 1840-1916) was a prominent actuary. 
Its third and fourth presidents were the notable mathematical astronomers 
G. W. Hill and Simon Newcomb, about whom I shall say more shortly. 
The fifth was R. S. Woodward (1849-1921), who like Gauss was an astron-
omer, surveyor, and mathematical physicist. He was rated twenty-first 
among American mathematicians and eleventh among American physicists 
in 1903. After being at Columbia from 1893 to 1904, he became the first 
President of the Carnegie Institution of Washington, serving as such until 
his death at age 72. 

From Fiske's account [1 , pp . 6-7] , one gets the impression that the AMS 

• For excellent short biographies of all AMS presidents to 1938, see [1, pp. 107-243]; their 
own attitudes are well expressed in their presidential addresses, published in the Bull. AMS. 
For Fiske's biography of McClintock, see Bull. AMS 23 (1917) 353-7. 
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meetings over which these men presided were convivial affairs. Osgood 
likewise, in describing the planning meetings for the Transactions [1, p . 
58] mentions a Rathskeller atmosphere. And Wiener, recalling a 1915 
AMS meeting in [19, p . 225], writes of "a beer-hall flavor, which has 
evaporated with time and the increased prosperity and respectablity of the 
scientist." 

The beery conviviality that pervaded early NYMS and AMS meetings 
was however misleading, at least as regards its presiding officers. Hill 
and Newcomb were regarded in Europe as the leading American mathe-
maticians of their t ime. Both were invited to address International Con-
gresses, whereas, Ε. H. Moore t and Osgood were passed over. It was not 
until 1912 that an American pure mathematician (Maxime Böcher) achieved 
this honor. It seems in order, therefore, to say something about the 
careers of these two astronomer-presidents of the AMS, and of the impor-
tance of celestial mechanics for the mathematics of their t ime. 

Hill.Φ George William Hill (1838-1914) was a lifelong bachelor; he went 
to Rutgers but never did any formal graduate work in mathematics . He 
earned his living from 1861 to 1892 by working on the Nautical Almanac 
(shades of Bowditch!), living much of the time in solitude on his farm in 
New Jersey. Though he lectured on celestial mechanics at Columbia several 
times, he was never a college professor in the ordinary sense. He became 
famous for his highly original use of infinite determinants to establish the 
existence of periodic orbits (the Hill equation), and of analytic continuation 
to perturb them. Poincare rigorized and generalized Hill's methods, 
which foreshadowed the functional analysis of Volterra and Fredholm, in 
his Methodes Nouvelles de la Mecanique Celeste. 

Newcomb. Though Simon Newcomb (1835-1909) had even less formal 
education than Hill, and never did anything equally fundamental , he was a 
much greater worldly success. After turning down the Directorship of the 
Harvard Observatory, he accepted a professorship at the Johns Hopkins 
University, where he became the dominant editor of the American Journal 
after Sylvester's return to England. Though Newcomb ranked Hill as 
"easily the greatest master of mathematical astronomy during the last 
quarter of the nineteenth century" he also thought of him as an employee 
whose annual salary he managed with great difficulty to get increased from 
$1200 to $1400 [16a, pp . 218-24]. 

A communicative extrovert, Newcomb was showered with honors through-

t Moore spoke in 1908 and 1912 (see §3), but never by invitation. 
• See [25], vol. 8, pp. 275-312 and Bull. AMS 21 (1915) 499-511 for biographies by E. W. 

Brown. Also Amer. Jour. Math. 60 (1933) #4, which was dedicated to Hill. 
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out the latter part of his life. Just to list them takes two pages of fine print!* 
More representative of his personality, which was tha t of a natural philoso-
pher, were his 146non-astronomical papers on every conceivable subject— 
he almost became a political economist. He combined immense astronomical 
calculations with some experimental work, even collaborating with Michel-
son on a fresh determination of the velocity of light. Newcomb was also 
the grandfather of Hassler Whitney (see §20). 

Celestial mechanics. The influence of celestial mechanics on mathe-
matics in the pre-1914 era was very great. It was esteemed not only for its 
scientific interest, but also because of its practical importance for naviga-
tion and the tides, already mentioned by Professor Struik. It was this 
that led to the establishment of the Nautical Almanac office in Cambridge, 
whose influence on American mathematics Judith Grabiner has described. 
Even earlier, it may well have been the stimulus of proofreading Laplace's 
Mecanique Celeste for Nathaniel Bowditch that first at tracted Benjamin 
Peirce to mathematical research. Likewise, the founder of the Annals of 
Mathematics was an astronomer, Ormond Stone; he remained an Editor 
until 1924 and an Associate Editor through 1932. As I have just said, the 
third and fourth NYMS-AMS presidents were the notable mathematical 
astronomers G. W. Hill and Simon Newcomb. Another astronomer-
mathematician active in AMS affairs was John M. van Vleck (1833-1912), 
three of whose mathematical students (Ε. B. van Vleck, H. S. White, F . S. 
Woods) gave the 1903 Colloquium Lectures. I shall mention still others 
in §8. 

Fiske. Thomas Scott Fiske (1865-1944), the founder and seventh presi-
dent of the AMS, personified the transition from the AMS of the 1890's 
to what it rapidly became. Like most of the other AMS presidents I have 
discussed, he was primarily an administrator; from 1901 to 1936, he acted 
as secretary (and later treasurer) of the College Entrance Examination 
Board. But unlike them, he had a P h . D . (from Columbia), and was inter-
ested primarily in pure mathematics. 

3. Ε. H. Moore and Chicago. After 1900, the AMS was dominated by 
a new generation of leaders, primarily oriented towards pure research. 
Chief among these were Ε. H. Moore, Osgood, Bocher, and Fine, all of 
whom had gone to Germany in the 1880's to get the training for scientific 
research work which German universities offered. They had all returned by 

• [I, pp. 124-6]. Fuller biographical sketches have been given by E. W. Brown, Bull. AMS 16 
(1910) 341-55, and by W. W. Campbell in the Memoirs Nat. Acad. Sei. 17 (1924) 1-18; 
Newcomb's bibliography (compiled by R. C. Archibald, a fellow Nova Scotian) continues 
through pp. 23-67. 
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1891; the oldest (Fine) was then 33, and the youngest (Böcher) just 24. 
They aspired to establish in our country traditions of mathematical re-
search similar to those in Germany. The achievements of these four leaders 
and their students during the years 1891-1914 will constitute the main 
theme of the next part of my talk. 

In the late 1890's, Moore worked with Bocher, Osgood, James Pierpont 
of Yale, Maschke, and T. S. Fiske to provide the AMS with a research 
journal of its own. After efforts to persuade Simon Newcomb to relinquish 
his autocratic control over the American Journal of Mathematics failed,* 
the AMS founded its Transactions in 1900 with Moore, Fiske, and E . W. 
Brown as its first editors. Its aim was to supply a more adequate publica-
tion outlet for American mathematical research. 

The establishment of the Transactions as a national research journal in 
1900 set the stage for a new level of mathematical activity. Much of this 
was stimulated by Moore, Osgood, Bocher, and Fine, who took turns at 
being AMS president during eight of the next twelve years—Fiske and H. 
S. White serving the other four. 

The most remarkable of these leaders was Ε. H. Moore (1862-1932)t. 
Ε. T . Bell was exaggerating only slightly when he wrote [1, p . 3] : " In the 
late 1890's and early 1900's the history of mathematics in this country was 
largely an echo of Moore's success and enthusiasm at the University of 
Chicago . . . " 

Already as a high-school student, Moore had become fascinated by 
mathematics while working at the Cincinnati Observatory as emergency 
summer assistant to Ormond Stone, the founder of the Annals of Mathe-
matics. He then went to Yale, which had set up a Graduate School in 1842. 
Here he got a P h . D . in 1885, after six years as an undergraduate and grad-
uate student. His thesis (on η-dimensional geometry) was published in the 
Trans . Conn. Math . Sei (1885) 9-26, in which Gibbs had also published his 
most important work. After a summer in Göttingen, where he met Felix Klein 
and other German mathematicians, he spent a year at the University of 
Berlin, where Weierstrass (then 70) and especially Kronecker inspired him. 

When the University of Chicago opened in 1892, thanks to a munificent 
gift from John D . Rockefeller, Moore became the first chairman of its 
mathematics department . He had already secured professorships for Heinrich 
Maschke (1853-1908) and Oskar Bolza (1857-1942), two gifted mathe-
maticians who had studied in Berlin and acquired Ph .D. ' s under Felix 
Klein in Göttingen. 

Felix Klein. Felix Klein's influence on the development of American 

•See [1, Ch. V] for some details about these negotiations. 
tFor Moore's career, see [1, pp. 144-50]; G. A. Bliss, Bull. AMS 39 (1933) 831-8, and 40 

(1934) 501-14; also [25, vol. 17, 83-102]. 
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mathematics was so great that it seems appropriate to recall a few facts 
about him. Born in 1849, he got his Ph .D . when only 19. His inaugural 
professorial address at Erlangen, delivered when he was 23, was "perhaps 
the most influential and widely read mathematical lecture of the last 60 
yea r s . " t It showed how the principal branches of geometry (Euclidean, 
affine, projective, conformal, etc.) are characterized by the groups leaving 
their respective fundamental concepts invariant. 

Early in 1893, the year of the Chicago World 's Fair, Moore, Maschke, 
Bolza, and H. S. White (also a Göttingen P h . D . and newly arrived at North-
western) sent out invitations for an International Mathematical Congress 
to be held in Chicago that summer. Mathematicians from six European 
countries participated, most notably Felix Klein, who gave a series of 
lectures after the Congress at Northwestern University, later published by 
the AMS. Klein's superb philosophical and historical perspective makes 
them good reading even today. Φ 

Thus Chicago became overnight the leading center of American research, 
with Moore as its inspired chief. In 1858, Kronecker had shown that every 
finite Abelian group was a direct product of cyclic groups of prime-power 
order.* In 1893, Moore proved the analogous but deeper result that every 
finite field is a Galois field: the root field of xq = χ for some prime-power 
q = pr. During the 1890's Moore also wrote on Steiner's triple systems and 
other combinatorial configurations, as well as on finite groups, stimulating 
Dickson's early work on these subjects (see §5). 

The year 1899 had witnessed the appearance of the first edition of the 
Grundlagen der Geometrie by Moore's contemporary David Hilbert 
(1892-1931). This book contained the first fully rigorous discussion of the 
axioms of Euclidean geometry. It stimulated E.H. Moore and his student 
Veblen (see §6) to try to improve on these axioms. This they did in articles 
appearing in the Transactions in 1902 and 1904; R. L. Moore extended 
their work some years later (see §10). 

Around 1905, Moore became fascinated by the rapidly burgeoning theory 
of integral equations, to which Hilbert was making major contributions. 
After the publication of Frechet's Thesis in 1906, and under the spell of 
Peano's symbolic approach to mathematics , he tried to lay new and 
extremely general foundations for what would today be called functional 
analysis, but which he called 'general analysis. ' He first presented his ideas 
in his 1906 New Haven Colloquium Lectures. Here he emphasized his fam-
ous principle of generalization by abstraction: "The existence of analogies 
between central features of various theories implies the existence of a 

tR . Courant, Jahresb. Deutsche Math. Ver. 34 (1926) 195-213. 
• For the 1893 Congress and subsequent lectures, see [1, Ch. VI], and the 1893 NYMS Bulletin. 
•See also Gauss, Werke, vol. 2, p. 266, and E. Schering, Gott. Abh. 14 (1869) 3. 
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general abstract theory which underlies the particular theories and unifies 
them with respect to those central features." 

Moore presented his ideas again at the International Congresses of 1908 
(in Rome) and 1912 (in Cambridge, England). Though very original, they 
had little influence at the time, probably because they were so abstract 
and often couched in Peanese symbolism. Indeed, not many of Moore's 
innovative ideas about General Analysis have survived.Φ Probably most 
important are those of 'extensionally attainable property' , 'directed set', and 
'relative uniform convergence,' whose significance was finally appreciated 
in the 1930's when abstract mathematics became fashionable (see §20). 

Even more notable than Moore's own research achievements were those 
of his P h . D . students. These included L. E. Dickson, Oswald Vehlen, 
G. D . Birkhoff, Τ . Η. Hildebrandt, and 25 others. R. L. Moore, who got his 
P h . D . at Chicago in 1905, must also have been inspired by his namesake. 
Moreover Wedderburn 's great masterpiece (§6) followed his year at 
Chicago; while Mac Lane mentions that as late as 1930-31, his interest in 
algebra was aroused by Moore's lectures. 

Although Moore's lectures were exciting for good mathematicians, they 
often confused students not sharing his enthusiasm for mathematics . In this 
tendency, he resembled Benjamin Peirce and many other research-oriented 
mathematicians. 

4. Harvard: Cole, Osgood, and Böcher. While Ε. H. Moore was inspiring 
an outstanding group of algebraists and geometers at Chicago, a renaissance 
of activity in classical analysis was taking place at Harvard. In 1872, after 
previous faltering efforts, President Eliot established a Graduate Depart-
ment with Benjamin Peirce as Dean. This was four years before Johns 
Hopkins got started. Coolidge [3] credits Benjamin's son, James Mills Peirce 
(A.B. 1853) with also "fostering the Graduate School in its early years ." 
Benjamin's other son Charles Sanders Peirce, though far more original, was 
too reckless to become a professor (see[l , p . 6] for some amusing anecdotes). 

The first P h . D . of Harvard 's Graduate School was granted in 1872 to 
William Elwood Byerly, a distinguished analyst whose course on Fourier 
series and boundary value problems introduced Harvard students to 
mathematical physics for decades. Closely associated with Byerly was 
Benjamin Osgood Peirce (A.B. 1876), a distant relative of the other Peirces. 
B. O . Peirce was an active researcher who kept mathematics and physics well-
coordinated at Harvard for many years, t In 1888, Ginn published a text by 
Peirce on the "Theory of the Newtonian Potential Funct ion"; Byerly's 

• For a sympathetic appraisal of General Analysis, see O. Bolza, Jahresb. DMV 23 (1914) 
248-303. For the applications to linear integral equations, see Ε. H. Moore, Bull. AMS 18 
(1912) 334-62. 

tSee his biography by Ε. H. Hall in [25, vol. 8, 437-68]. 
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"Fourier Series and Spherical Harmonics" followed in 1893. These were the 
texts for Math . 10a and 10b, courses that were still given when I was in 
college.Φ Peirce's Table of Integrals, first published in 1899, is still in use, 
as revised by Osgood and later by Foster. 

F. N. Cole. Not all the distinguished mathematicians educated at 
Harvard during that period were analysts. An early algebraist from Har-
vard was Frank Nelson Cole (1861-1926). After graduating in 1882, Cole was 
awarded a Parker Fellowship for study in Germany, like Osgood, Böcher, 
Hedrick, and many others after him. There he got a Ph .D . with Felix Klein 
in 1886, returning to lecture at Harvard for three years before going to 
Michigan. While at Michigan, he pioneered in introducing the study of 
finite groups in our country (see §5). In 1896, he went to Columbia, where 
he served as AMS Secretary until 1921, and chief editor of the Bulletin from 
1899 to 1920. Cole's personality and his influence on the AMS for a quarter 
of a century are vividly described in [1, pp . 100-3]; the Cole Prize and vol. 27 
of the Bulletin are permanent tributes to his memory. 

Osgood and Bocher.t Although Byerly, the two Peirces, and F . N. Cole 
all contributed significantly to the development of American mathematics, 
Harvard's national leadership and international reputation during the 
decades 1894-1914 were primarily due to William Fogg Osgood (1864-1943) 
and Maxime Bocher (1867-1918). After graduating from Harvard (Osgood 
in 1886, Bocher in 1888), both men got Parker Fellowships for study in 
Germany, where they got Ph .D. ' s (Osgood at Erlangen in 1890 at age 26, 
and Bocher at Göttingen in 1891 while still only 23); moreover, both men 
were influenced by Felix Klein. 

Their careers were similar in other respects. Klein invited them both 
(but apparently not Moore) to write articles for the Encyclopädie der 
Mathematische Wissenschaften, of which he was the chief organizer. 
Finally, both became Presidents of the American Mathematical Society, 
Osgood during 1905-6 and Bocher during 1909-10. 

However, their scientific personalities were very different. Osgood was 
rigorous, systematic, and thorough. He expanded his article on complex 
anaylsis in the Enc. Math. Wiss. into a treatise, Lehrbuch der Funktionen-
theorie (1907), that was preeminent for at least 20 years. His own theorems 
in this and other areas of analysis were notable for their sharpness and 

• By that time, Kellogg's Potential Theory (still the best book on the subject today) had re-
placed Byerly's text. Kellogg was a Ph.D. of Hilbert. 

•For Osgood, see [1, pp. 153-8]; and B. O. Koopman, Bull. AMS 50 (1944) 139-42. Osgood's 
imitation of Felix Klein's manner is ridiculed by Wiener in [22, pp. 231-3] and (23, p. 30]. 
For Böcher, see [1, pp. 161-6] and G. D. Birkhoffs appreciation in Bull. AMS 25 (1919) 
197-215 (reprinted in [5, vol. iii, pp. 227-45]); and Osgood in Bull. AMS 25 (1919) 337-50. 
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Weierstrassian rigor. He taught at Harvard from 1890 to 1933, often from 
his own widely used textbooks, and his course on functions of a complex 
variable remained the key course for Harvard graduate students until 
World War II . 

Bocher, on the other hand, was intuitive, brilliant, and fluent. His short 
monographs on integral equations and on the methods of Sturm were 
models of lucidity and perception, as was his invited address at the 1912 
International Mathematical Congress. Whereas Osgood supervised only 
four P h . D . Theses in his 43 years at Harvard, Bocher supervised seventeen 
in 24 years. His students included D. R. Curtiss, G. C. Evans, Lester Ford, 
Tomlinson Fort , and E. R. Hedrick (see §9). 

Both Osgood and Bocher wrote landmark texts for American college 
students, which played an important role in my own education. Thus , I 
learned the calculus from Osgood's books on the subject, and he was co-
author of the book from which I learned analytic geometry (he also wrote 
one on mechanics). Bocher was co-author with my high-school teacher Harry 
Gaylord of a text on trigonometry, but it was his Introduction to Higher 
Algebra (1907), later translated into German and Russian, that was most 
famous. When Saunders Mac Lane and I were writing our Survey of Mod-
ern Algebra, I had this book and Η. B. Fine's College Algebra much in 
mind, as the books whose substance we should reformulate axiomatically 
before emphasizing the general theories of (abstract) groups, rings, and 
fields. 

5. Dickson and Bliss. By 1900, the University of Chicago had already 
turned out two outstanding new mathematicians: Leonard Eugene Dickson 
(1874-1954) and Gilbert Ames Bliss (1876-1961). I shall next sketch the 
careers of these two men, up to the time when they became AMS presidents 
(Dickson in 1917-18, Bliss in 1921-23). During these years, Dickson was 
much more influential than Bliss, and his activities will therefore dominate 
this section. 

Dickson was a native Texan, who had much of the dynamic energy and 
rugged individualism that we associate with that state. During his lifetime, 
he wrote nearly 300 papers and 18 books (for a list through 1937, see [1, 
pp. 183-94]), and supervised at least 64 Ph .D . Theses. Dickson had al-
ready published 10 papers before getting his Ph .D . with Ε. H. Moore in 
1896, at the age of 22. During the next decade, Moore's influencet was 
reflected in Dickson's concentration on finite groups (e.g., the simple 
groups of order 2 6 3 2 5 ) , finite fields (see Bull. AMS 6 (1900) 203-4) and 
"tactical configurations". In 1900, he joined the Chicago faculty; in 1903, 

tin turn, Moore's and Cole's interest in groups may have been stimulated by Felix Klein, a 
great apostle of the subject (Lie and Frobenius were among his converts). 
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he was ranked as the ninth best American mathematician; and by 1906, he 
had already published 126 papers! 

Dickson's interest in finite groups was doubtless stimulated not only 
by Moore, but also by F . N. Cole (see §4), who had translated Netto's 
Theory of Substitutions into English in 1892, and then written seven more 
papers in the next four years concerned with the enumeration and general 
properties of finite abstract groups, permutation groups, and linear groups 
of specified order and degree. 

Linear algebras. Another phase of Dickson's early work was concerned 
with linear associative algebras, as defined by Benjamin Peirce. Consider-
able insight into the original stimuli for this work is gained by reading a 
contemporary paper by Wedderburn,* who came to Chicago from Scotland 
in 1904-5 as a Carnegie Fellow. In this paper, Wedderburn sharpened 
Ε. H. Moore's result tha t every finite field is a Galois field, by showing 
that the hypothesis of commutativity is redundant . Since every finite divi-
sion ring is a division algebra over some Zp, it suffices to show that every 
finite division algebra is a field. Wedderburn proved this, using a result 
from number theory announced by G. D. Birkhoff and Vandiver in 1902, 
when G. D. Birkhoff was only 18! The comments at the end of Wedderburn ' s 
paper also reveal the influence of Moore and Dickson! 

Dickson's own work on linear algebras was primarily concerned with 
division algebras (see Trans . AMS 7 (1906) 370-90 and 514-22) and es-
pecially with cyclic division algebras. He continued to contribute to the 
theory of linear algebras for many years, and his approaches were developed 
further in the early 1930's by A. A. Albert, his best student. However, his 
later work dealt increasingly with number theory (see §13). 

G. A . Miller, t The interest of Cole, Moore, and Dickson in finite groups 
was contagious! Among those attracted to the subject, one of the most 
enthusiastic was G. A. Miller (1863-1951), who fell in love with the subject 
while living in F . N. Cole's home at Ann Arbor. Miller had begun his 
career by correcting and extending the lists of transitive and primitive 
permutation groups of low degree worked out by Serret (1850), Jordan 
(1872) and Cayley (1891). Since American research on finite groups to 
1938 has been exhaustively (if not always accurately)* reviewed by Ε. T . 

»See J. H. Maclagan-Wedderburn, Trans. AMS 6 (1905) 349-52, and G. D. Birkhoff and 
H. S. Vandiver, Annals of Math. 5 (1904) 173-80. 

tFor Miller's biography, by H. R. Brahana, see [21], vol. 30, pp. 257-76 (plus 35 more pages 
of bibliography). 

• E.g., his mention of the "simplicity" (should be "solvability") of groups of order paqe. 
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Bell in [2, pp . 8-15], I shall only add that Miller, Blichfeldt, and Dickson 
collaborated in writing the book Finite Groups (Wiley, 1916) which intro-
duced me to group theory 15 years later, and that Miller bequeathed two 
million dollars to the University of Illinois, where he had taught for many 
years. 

Maschke and Bolza. Although Dickson and Veblen were primarily in-
fluenced by Moore, the outstanding success of the University of Chicago in 
turning out first-rate mathematicians also owed much to Maschke and 
Bolza. Moreover Maschke played an important role in the founding of the 
Transactions [1, pp . 57-9] ,* though his influence on students seems to 
have been much less than that of Bolza. 

Bolza, after studying with Christoffel, Weierstrass, and H. A. Schwarz, 
got his Ph .D . with Felix Klein in 1886. His Lectures on the Calculus of 
Variations (1904) are still a superb reference, while in a 1914 paper he 
defined and made the first serious attack on the Problem of Bolza: that of 
minimizing a definite integral on a curve whose endpoints are constrained 
to lie on given surfaces. When Bolza returned to Germany in 1910, after 
Maschke's death in 1908, the University of Chicago had truly suffered "an 
irreparable loss" [1, p . 78]. 

Bliss. Bliss got his P h . D . in 1900; he was an analyst whose main mathe-
matical inspiration came from Bolza, and his most important mathematical 
work was in Bolza's field: the calculus of variations. This interest was 
intensified by a year spent at Göttingen with Klein, Hilbert, Minkowski, 
Zermelo, Carätheodory, and others. Though not as original or prolific as 
Dickson, he was (like his mentor Bolza), an excellent scholar and a master-
ful expositor and interpreter. 

By 1908, he had published 16 research papers, and been invited (with 
E. Kasner of Columbia) to give the 1909 colloquium lectures. These were 
the basis of his monograph on Fundamental Existence Theorems (Amer. 
Math . S o c , 1913), an invaluable reference for a generation of American 
graduate students. 

It was natural that , when Maschke died, Bliss should be asked to take 
his place. Dickson had been on the Chicago faculty since 1900; together, 
Dickson and Bliss maintained Chicago's position as one of our three lead-
ing mathematical centers long after Moore (who remained chairman until 
1931) had ceased to publish; see §§13-14. 

6. Princeton: Fine, Eisenhart, and Veblen. During the decade 1900-10, 
Princeton joined Chicago and Harvard as one of our three leading centers 

•Maschke's career was written up by Bolza in Bull. AMS 15 (1909) 85-95. 
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of mathematical research. This change was due to the good taste of Henry 
Burchard Fine (1858-1928).* Fine's love of mathematics apparently had as 
its source the enthusiastic lectures of George Bruce Halsted (1853-1922), 
who taught at Princeton from 1879 to 1884 after studying under Sylvester 
at JHU. Fine got his Ph .D . at Leipzig in 1884, working with Felix Klein 
and Study, but it was Kronecker's lectures that Fine, like Ε . H. Moore a 
year or two later, found most inspiring. Meanwhile Hals tedt went to the 
University of Texas, where he stayed until being fired in 1904 for hiring 
R. L. Moore over the opposition of the Board of Regents! 

Fine was on the Princeton faculty from 1885 until his death in 1928, 
acting as dean from 1903 on. Though he wrote a number of excellent 
textbooks, outstanding in their t ime, he was more important as an ad-
ministrator than as a scholar. He was a lifelong friend of Woodrow Wilson, 
President of Princeton and later President of the United States, and acted 
as dean from 1903 until his death in 1928. Among other things, he raised 
$3,000,000 for science at Princeton, and Fine Hall is named for him. 

In 1900, even before becoming dean, Fine showed his good taste by 
inviting Luther Pfahler Eisenhart (1878-1965) to join the Princeton faculty. 
In 1905, Fine and Eisenhart were joined by Veblen and Bliss, while J. H. 
M. Wedderburn (1882-1948) came to Princeton from Chicago a few years 
later. After Bliss returned to Chicago (see §5), G. D . Birkhoff came to 
Princeton from 1909 to 1912 (see §8). Fine was clearly trying to attract to 
Princeton the best of Chicago's many outstanding Ph .D. ' s . 

Eisenhart. From this galaxy of outstanding young mathematicians, it 
was Eisenhart and Veblen who left the most lasting mark on Princeton, 
making it a great center of geometry and topology. Eisenhart was a master 
of differential geometry; like Fine, he wrote several excellent books—only 
Eisenhart 's books were graduate texts and surveys. Thus I learned much of 
what I know about Lie groups from his Continuous Groups of Transforma-
tions (1933). He also wrote nearly 100 research papers, but it was probably 
his advanced expository surveys that were most notable. He was President 
of the AMS in 1931-32, and Dean of the Princeton Graduate School from 
1938 on. His activity never stopped; his last paper (on differential geometry 
and general relativity) was published in 1963, when he was 84 years old! 

Veblen.* Although Eisenhart was an important figure throughout his 

*For biographies of Fine, see [1 , pp. 167-70] and O. Veblen, Bull. AMS 35 (1929) 726-30. 
From 1905 on, Fine relied increasingly on Veblen for advice. 

tFor more information about Halsted, see [17, pp. 123-9] and R. C. Archibald, Scripta 
Math. 2 (1934) 369. 

• For more about Veblen's career, see Deane Montgomery, Bull. AMS 69 (1963) 26-36, and 
Saunders Mac Lane [5, vol. 37 (1964) 325-42]. 
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long life, it was Oswald Veblen whose influence was predominant , not 
only on Princeton but also on a large sector of American mathematics . A 
son of a professor of physics at the University of Iowa, he got a second 
A.B. at Harvard in 1900 after graduating from the University of Iowa two 
years earlier, just before his 18th birthday! He then went to Chicago, 
where his uncle Thorstein was a prominent (and liberal) professor of eco-
nomics. 

Here he worked closely with Ε. H. Moore, under whose guidance he 
wrote an impressive thesis on axioms for Euclidean geometry. This was a 
significant extension of Moore's systematic efforts to improve Huber t ' s 
Grundlagen der Geometrie;% other offshoots were collaborative papers with 
W. H. Bussey, J. H. Maclagan-Wedderburn and Moore's brother-in-law, 
J. W. Young (1879-1932). The end-product of this collaborative research 
was Veblen's classic two volume treatise (1910, 1918) on Projective Geom-
etry. The first volume, written in collaboration with J. W . Young, contains 
a masterful discussion of the foundations of the subject, and its concern 
with projective "geometries" over arbitrary fields relates it directly to 
Wedderburn 's fundamental research, which I shall discuss shortly. 

Another early paper by Veblen* contains the first truly rigorous proof 
of the Jordan curve theorem, foreshadowing his lifelong interest in com-
binatorial topology (or analysis situs, as it was then called). However, his 
activity in this area did not truly begin until 1912, when he wrote several 
papers on the subject, of which one with J. W. Alexander on the classifica-
tion of manifolds (Annals of Math . 14 (1913) 163-78) was especially seminal. 

Wedderbum. While at Chicago (see §5), Wedderburn had already col-
laborated with Veblen in correcting and improving Hubert ' s Grundlagen 
der Geometrie (see Trans . AMS 8 (1907) 379-88). It was not unnatural 
tha t Veblen should have encouraged Fine to invite Wedderburn to Prince-
ton. Shortly after, Wedderburn wrote his masterpiece, t in which he showed 
that the most important structure theorems about linear associative algebras 
could be proved by rational methods, and hence were valid for linear al-
gebras over any field. Since then, the structure theory of such algebras has 
been referred to as Wedderburn theory. A few years later, Wedderburn 
also gave a near-proof of the unique factorization theorem for finite groups, 
also a classic. However, like Dickson (who worked along similar lines) he 
had no taste for committee work; he was primarily a scholar who was not 

• For a Göttingen appraisal of these American contributions, see A. Schmidt in Hubert's Ges. 
Werke, vol. 2, pp. 404-14. 

•Trans. AMS 6 (1905) 83-98. Cf. R. L. Moore, ibid, 16 (1915) 27-32; both men were con-
temporary students under Ε. H. Moore. 

tProc. Lond. Math. Soc. 6 (1907) 77-118. 
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deeply concerned about American mathematical development or American 
institutions as such. 

7. George David Birkhoff. The last of Chicago's outstanding Ph .D. ' s 
in the Moore-Bolza-Maschke era was my father, George David Birkhoff 
(1884-1944). Like Veblen, he was the son of a professional man; both of 
their fathers' fathers worked with their hands . Veblen was the eldest of 
eight; G. D . Birkhoff the eldest of seven children. Both were tall , erect, blue-
eyed, blond, sociable extroverts with deep interest in all aspects of mathe-
matics and mathematical physics. 

G. D . Birkhoffs father David Birkhoff (1859-1909) came to Chicago 
from Holland in 1871 with his father, who had decided that the New World 
offered more opportunities to a skilled carpenter than did his native country, 
where he was umemployed. David's father arrived just in time to help build 
the first house completed after the Great Chicago Fire. 

David earned his way through Rush Medical College by working in a 
furniture factory. He then married Jennie Droppers , likewise of Dutch 
ancestry, who had also wished to become a doctor. Following two years 
in the Dutch community of Overisel, Michigan, he practiced medicine in 
Chicago until his untimely death. G. D . Birkhoff was born in Overisel, 
and heard much Dutch spoken around him in his youth. Many of his 
father's patients were of Dutch extraction, and in 1893, his grandfather 's 
brothers and sister came to visit their brother, and see the Chicago World 's 
Fair and the New World. 

G. D . Birkhoff attended Lewis Institute, a partially endowed private school 
with high educational ideals. It was there, around the age of fifteen, that 
he fell in love with mathematics; as is explained by Vandiver [19], he sent 
to the then new American Mathematical Monthly a solution to a difficult 
problem when only 14 or 15! His intense, hardworking father and his 
gregarious grandfather were both very proud of his mathematical enthusiasm 
and originality. 

When he entered the University of Chicago two years later, in 1901, he 
was already trying to solve research problems. He presented his first paper 
to the American Mathematical Society (on number theory) when only 18 
years old; his co-author, H. S. Vandiver, later became a very distinguished 
number theorist. The results of this paper enabled Wedderburn to give the 
first proof of the theorem that every finite division ring is commutative 
(see §5). 

In [2, p . 274], G. D . Birkhoff has described the thrill he got from his 
first sight of the "well-filled shelves" at the University of Chicago, and his 
inspiring teachers there "under the general leadership of Ε. H. Moore" , 
who "emphasized the abstract and algebraic side of mathematics, al-
though . . . remarkably catholic in his outlook". He transferred to Harvard 
the next year "with Moore's approval". Whether his transfer was influenced 
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by Veblen, who had graduated from Harvard two years before, I do not 
know. He may also have been influenced by the example of his distin-
guished uncle Garret t Droppers , who had graduated from Harvard in 1887 
and became an economist, t Or, he may have just wanted to learn from 
Osgood and Bocher, the leading American analysts at that t ime. 

In his first year at Harvard, still only 19, G. D . Birkhoff formulated the 
'Birkhoff-Hermite problem' of determining which sets of ( r + 1 ) pairs 
of nonnegative integers have the property that , for arbitrary real c , , and 
distinct real a,, there is one and only one polynomial p(x) of degree r satis-
fying p{-'\ai) = ca. He observed that mean value and remainder theorems 
hold in all such cases. Polya solved the two-point Birkhoff-Hermite prob-
lem in 1937; it has recently become very fashionable, and is still unsolved. 

At Harvard, G. D . Birkhoff was most stimulated by Bocher, whose influ-
ence is evident in the first major phase of his work—that concerned with 
"asymptotic expansions, boundary value problems, and Sturm-Liouville 
theorems."* He also took at least one course with Osgood, and probably with 
Byerly as well. He once confided to me that he found Osgood's assignments 
dull, and didn' t do them until Osgood threatened to exclude him from the 
course if he didn' t conform! 

Having mastered Harvard's offerings, he graduated in 1905. His Harvard 
classmates included Walter Sherman Gifford, later president of Am. Tel. 
and Tel. , and Clarence Dillon of Dillon, Read and Co., while James K. 
Rand, the founder of Remington Rand, was a fraternity mate . However, 
G. D . Birkhoff was never very impressed by business success, perhaps 
because it was easier to become rich in his lifetime.Φ 

G. D. Birkhoff s ambition was for mathematical distinction, and he con-
tinued his quest for this as a graduate student at the University of Chicago 
in 1905-7. The extent of his ambition is shown by a statement he made years 
later to me in an expansive moment: that , when studying for his Ph.D. Orals 
in 1907, he "had tried to master essentially all the mathematics that was 
known at the t ime," and had made a good stab at achieving this ambition! 

During these years, Ε. H. Moore was his Thesis Advisor, and he "saw 
Moore's program of General Analysis taking shape day by day" [6, p . 275]. 

tThough J. P. Morgan's partner Thomas Lamont was his classmate, Garrett Droppers' 
political views were somewhat similar to those of Thorstein Veblen. He was an active Demo-
crat, and reputed to have influenced William Jennings Bryan to swing his support to Woodrow 
Wilson, whose Minister to Greece he later became. I was named for Garrett Droppers. 

• I am following Morse's analysis [6, vol. 1, pp. xxvi-xxx] (see the footnotes on pp. xxvii, 18, 
37, 51, 79, of the volume cited). 

• Thus his Uncle George rose from immigrant to President of the Chicago Board of Real 
Estate; another uncle (by marriage) co-founded the Scully Iron and Steel Co.; and George 
Birkhoffs daughter Genevieve married J. Motley Morehead, a poor boy who became a 
major executive in Union Carbide and benefactor of the University of North Carolina. 
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However, he was not attracted by the generality and abstractness of Moore's 
ideas; his Thesis owes much more to Bocher. Morever, it does not seem that 
Ε. H. Moore recognized his preeminence. When Ε. B. van Vleck offered him 
an instructorship at Wisconsin (at a salary of $1000), van Vleck was not fol-
lowing Ε. H. Moore's recommendation. By this t ime he was engaged to 
Marjorie Grafius, an a lumna of Lewis Institute and the University of Illinois. 
The engaged couple waited a year to get married, so that they could save 
enough money to furnish their first home in Madison. 

In 1909, the young Birkhoffs moved to Princeton, and it was here that 
G. D . Birkhoff really found himself. His interests were not limited to analysis. 
Thus he always liked to tackle difficult unsolved problems, and his papers 
typically attacked these with radically new ideas and methods. He initiated 
a novel approach to the four-color problem when 27, observing that the 
number of ways of coloring a map Μ in λ colors is a polynomial in λ, the 
'chromatic polynomial' />M(X) . A year later, he introduced the concept 
of a reducible ring of η regions with reducing number 4{n), such that the 
problem of coloring any map containing such a ring having more than Φ(η) 
regions inside and outside can be reduced to that of coloring a smaller map. 
This is the key concept of the celebrated Haken-Appel 1976 computer-aided 
proof of the four-color theorem, t 

G. D. Birkhoff sometimes omitted details of proofs, a trait which led 
J. D . Tamarkin to claim that one of his early proofs was incomplete. 
He promptly provided the details.* 

Much of G. D. Birkhoff s most famous work concerned the general prop-
erties of (conservative) dynamical systems. Already in the summer of 1909, 
he was led by a paper of Hadamard to introduce the notions of a- and ω-
limit points. During the next three years, while at Princeton with Veblen, he 
continued to think about related questions among many others; the frequent 
discussions of the two friends ranged over the whole of mathematics! 

Finally in 1912, he achieved a most dramatic success by proving Poincare's 
conjecture: that any area-preserving transformation of an annulus into itself, 
which moved the two bounding circles in opposite directions, had to have 
a fixed point. Since Poincare and other leading European mathematicians 
had tried in vain to prove this conjecture, its demonstration by a 28 year old 
American who had never even studied in Europe made him internationally 
famous overnight.* Moreover, since Poincare's conjecture has a direct 

tAm. J. Math. 35 (1913) 115-28, or [5, vol. iii, 6-19]. He evidently discussed the problem 
with his friend Veblen; cf. O. Veblen, Annals of Math. 14 (1912) 86-94. 

• See [6, vol. i, pp. xxviii and 78-89]; G. D. Birkhoff had stated frankly (ibid., p. 20, footnote) 
that "In this proof, certain details of logic are slurred over." My mother told me that G. D. 
Birkhoff composed his rebuttal while troubled with a painful sty in his eye, perhaps stimu-
lated by emotional stress! 

*I am indebted to Richard Courant for his recollection of this event; cf. [30]. 
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application to celestial mechanics (by Liouville's theorem, any conservative 
Lagrangian system induces a volume-conserving flow on its phase-space), 
this proof made him the acknowledged heir of the great tradition of Newton, 
Laplace, Gauss, Hamilton, and Jacobi. 

In the same year, G. D. Birkhoff moved from Princeton to Harvard, and 
the formative stage of his career was over. 

YEARS OF TRANSITION: 1 9 1 4 - 1 9 2 0 

8. Growing Pains. By 1914, our country's higher mathematics was 
progressing rapidly. Nearly 25 new Ph .D. ' s were being produced annually, 
mostly in a handful of major centers. This rate of production would continue 
with slight change until 1925. In an invaluable contemporary appraisal [9a], 
a committee with Bocher as chairman assessed the quality as fully up to 
European standards. However, it also stressed the value of European study 
for those wishing a broader and deeper mathematical culture. 

Alas, after a century of relative peace, during which European science and 
industry had grown to unprecedented levels, came World War I. It exacted 
a tragic toll on every phase of life; a whole generation was sacrificed in a 
futile struggle, leaving deep and permanent scars. 

Our country's rapid mathematical progress, on the contrary, continued 
during the years 1914-1920 with only a brief pause. One result was the end of 
the tradition of going to Germany for a Ph .D. ; by 1920, we had several good 
graduate centers of our own! 

However, our progress was accompanied by some growning pains: with 
growth came factionalism. The leadership of the AMS was divided on two 
issues: regional balance, and concern with mathematical education. In par-
ticular, the Chicago Section felt neglected by the AMS. Although it had pro-
duced the lion's share of outstanding American-educated Ph .D. ' s , and the 
center of population was steadily moving westward, meetings were usually 
held to suit the convenience of the eastern Ivy League faculties, rather than 
that of Chicago, Northwestern, and the "big t en" middle western state uni-
versities. 

Ε . B. van VIeck. Fortunately, a split along regional lines was avoided, 
thanks to Ε. B. van Vleck, AMS President in 1913 and 1914. The tactful way 
in which he prevented Chicago's sense of neglect from causing a schism is 
described in [1, pp . 78-81, p . 109]. To this description, I should like to add a 
few paragraphs about his career and the van Vleck family. 

Ε. B. van Vleck was the second of three generations of distinguished 
American scientists. His father John M. van Vleck (1833-1912) was, like his 
contemporaries Hill and Newcomb, an astronomer who had worked for the 
Nautical Almanac Office in Cambridge. He was for many years a dynamic 
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administrator at Wesleyan, and later active in the AMS, of which he was 
vice-president in 1904. John M . van Vleck's students included Henry S. 
White* (1861-1943) and F . S. Woods, who together with Ε . B. van Vleck 
gave the AMS colloquium in 1903. White became the ninth AMS president 
four years later; he was still faithfully attending AMS meetings in the mid-
1930's when over 75, chatting benevolently with aspiring young math-
ematicians like myself! 

After graduating from Wesleyan in 1884, Ε . B . van Vleck (1863-1943) 
stayed on a year as an assistant in physics. He next spent two years at JHU, 
studying and serving as an assistant to the experimental physicist Rowland, 
and then three years at Wesleyan as a teaching assistant, before finally going 
to Göttingen in 1890-93, where he studied "with Burkhardt , Fricke, F . 
Schur, Η. Α. Schwarz, Voigt, Weber, and that 'marvelous teacher 
Felix Kle in ' " [1, p . 171], finally getting his P h . D . at age 30.** He taught 
mathematics at the University of Wisconsin from 1893 to 1929; his math-
ematical publications, though not voluminous, were skillfully written and 
widely read. He may have anticipated Borel by proving the zero-one law.* 
I remember h im well as a kindly man, who gave my father his first job. t He 
was elected to the National Academy in 1911, and became vice-president of 
the AAAS. He also travelled all over the world and acquired an outstand-
ing collection of Japanese prints . 

Ε . B . van Vleck's son John H. van Vleck (1899-) is a world-famous 
expert on magnetism. He has been president of the American Physical 
Society and received many other honors. 

E. W. Brown. The next AMS president was Ernest William Brown (1866-
1938), who had come to Haverford College from England in 1891, following 
Frank Morley (1860-1937). Morley moved to Johns Hopkins in 1900, and 
Brown to Yale in 1907. Presumably, Brown was chosen as AMS president in 
preference to his colleague James Pierpont, who had been a major factor in 
founding the Transactions, because of his greater research reputation. 
Morley would become AMS president in 1919-20. 

Brown was the third and last astronomer to be AMS president (Fine had 
been acting director of the Princeton Observatory in 1908-12, also serving as 
AMS president in 1911-12.) Like his predecessor G. W . Hill, Brown was a 
lifelong bachelor; for comments on this fact (written by another bachelor) see 
[1, p . 177]; perhaps evenings spent in lengthy calculations are not conducive 

•See Bull. AMS 49 (1943) 670-1. 
••For his biography, see [21, vol. 30, pp. 399-409] also G. D. Birkhoff, Bull. AMS 50 (1944) 

37-41. 
• See A. Novikoff and J. Barone, Historia Math., 4 (1977) 43-65. 

tLegend has it that Ε. H. Moore recommended someone else, but that Ε. B. van Vleck said 
'I'll take the Dutchman'. This sounds apocryphal! 
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to matrimony! "Dur ing a year of post-graduate work at Cambridge 
[University], his chief adviser, Prof. G. H. Darwin, recommended him to 
study G. W. Hill's classic paper . . .and thus he started in a field of research 
which was to occupy him for more than forty-five years ." [1, p . 174]. Namely, 
he carried on Hill's tradition of making improved predictions of the orbits of 
the planets and their moons. He won the Gold Medal of the Royal 
Astronomical Society in 1907, for developing new algorithms for calculating 
the position of the moon. This led to an invitation to leave Haverford for 
Yale, where he taught for 25 years, and where his distinguished tradition was 
continued until recently by Dirk Brouwer.* 

After 1920, celestial mechanics ceased to dominate theoretical astronomy, 
which thereby lost its traditional affiliation with mathematics . Thus when 
Thomas J. Watson established a center for astronomical computations at 
Columbia in 1929-33 [12, p . 109] under W. J. Eckert (1902-71), the event 
went almost unnoticed in mathematical circles. 

Indeed, recent Ph .D. ' s in pure mathematics may wonder why celestial 
mechanics was esteemed so highly before 1920! They should remember how 
such precise calculations led not only to the discovery of Neptune, but also to 
that of the advance in the perihelion of Mercury, one of the main inspirations 
for Einstein's general theory of relativity. Celestial mechanics was the first 
branch of mathematical physics to be made exact—and until 1900, math-
ematical physics was considered to be a branch of mathematics . Even in our 
t ime, the design of accelerators and the control of satellites depends on 
methods similar to those developed by G. W. Hill, Simon Newcomb, and 
E. W. Brown.* 

9. The Monthly and the M A A . t In 1893, Benjamin Finkel and J. M. 
Colaw, both members of the NYMS, published the first issue of the 
American Mathematical Monthly in Kidder, Missouri. It was "devoted to 
the solution of problems in pure and applied mathematics , papers on math-
ematical subjects, biographies of noted mathematicians, e t c . " From the 
start, it stimulated the curiosity and sharpened the wits of many aspiring 
young mathematicians, including G. D . Birkhoff and H . S. Vandiver. 

During the first decades of the AMS, many of its leaders were active in 
mathematical education. Thus David Eugene Smith of Columbia, AMS 
Librarian 1902-1920 and Vice President in 1922, was an eminently successful 

*See the articles by Eckert (Brown's student) and by Brouwer and Clemence in Proc. IX Symp. 
Applied Math., Amer. Math. Soc, 1959. 

• Ibid; see especially the articles by E. D. Courant, F. W. Shipple, K. A. Ericke, and J. W. 
Siry. 

tFor a fuller account, see [7, Chap. I]. Also Amer. Math. Monthly 64 (1933) No. 7: "The 
Otto Dunkel Memorial Problem Book," (H. Eves and E. P. Starke, eds.). Otto Dunkel was 
another Bocher Ph.D. 
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writer of high school textbooks. Fiske was secretary of the College Entrance 
Examination Board from 1902 to 1936. Moreover Ε. H. Moore had some 
original ideas about the teaching of elementary mathematics . Thus his 
retiring AMS presidential address (1902) dealt with high-school and junior 
college education.* Though given a chilly reception by its auditors [14, p . 16], 
its ideas were widely disseminated by Herbert Ellsworth Slaught, who was on 
the Chicago faculty from 1898 to 1931, and thus had considerable national 
influence. 

In 1903, L. E. Dickson joined the editorial staff of the Monthly, and in 
1906 the University of Chicago assumed exclusive control of it, with Slaught 
as Chief Editor from 1908 on. Thus in 1910, Chicago ran the Monthly, 
Harvard ran the Annals, JHU the American Journal of Mathematics, and 
the AMS ran the Transactions. 

Slaught. It was above all Η. E. Slaught (1861-1937) who was active in 
organizing mathematical education in our country, t He began by inviting the 
University of Illinois to co-sponsor the Monthly. In 1914, he invited the 
AMS to broaden its base while strengthening the Monthly by sponsoring this 
journal . This effort was unsuccessful, partly because of the strong opposition 
of Osgood, at the t ime a dominant figure of the Eastern establishment 
[1, p . 79]. From then on the AMS officially dissociated itself from the 
problems of high-school and undergraduate college education. 

The Chicago Section was already resentful at the tendency of Eastern 
mathematicians to ignore the rest of our country (see §8). Following the 
refusal of the AMS to sponsor the Monthly, Slaught led a movement that 
resulted in the foundation of the Mathematical Association of America 
(MAA). 

Slaught's activity did not stop there; in 1920, he organized the National 
Council of Teachers of Mathematics (NCTM); and a few years later, the 
Carus Monograph Series. Small wonder that , before he died, he was made 
permanent honorary president of both the MAA and the NCTM! 

Earle Raymond Hedrick. The first President of the MAA was Earle 
Raymond Hedrick (1876-1943), a many-sided man with varied accomplish-
ments. After studying at the University of Michigan and Harvard, he got a 
Ph .D . at Göttingen, after which he spent some months in Paris ," in contact 
with such men as Goursat , Picard, Hadamard , Appell, and Jules Tannery" 
[1, p . 223]. One of his first contributions was to translate Goursat ' s Cours a" 

•Reprinted in Readings in the History of Mathematics Education, J. K. Bidwell and R. G. 
Clason (eds), National Council of Teachers of Mathematics, 1970. 

tFor tributes to his work, see Amer. Math. Monthly 45 (1938) 1-10; also G. A. Bliss in Bull. 
AMS 43 (1937) 595-7. He was at the University of Chicago from 1892 on! 
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Analyse into English, thus making this classic treatise more accessible to 
American students. While continuing with research, though gradually less 
and less, he became increasingly influential by popularizing advanced 
mathematical ideas through his articles and textbooks, and by his organiza-
tional activities. He was editor of the Bulletin from 1921 to 1937, had nine 
children, drank legendary quantities of coffee, and left the University of 
Missouri to become Chairman of the Mathematics Depar tment at the (then 
new) University of California at Los Angeles in 1924. When he became 
Provost of that institution, he finally gave up being editor of the Bulletin. 
He was President of the AMS in 1929-30, and Vice-President of AAAS in 
1931. In all these roles, he was a dynamic man who "got things done" in a 
true pioneer spirit. 

Hedrick was outstanding in his leadership, bu t many others were instru-
mental in spreading the mathematical gospel to the far reaches of the country 
(as seen from the northeast). Among these Griffith C. Evans (1887-1973) and 
Lester R. Ford (1886-1967) were especially notable. Both Ph .D. ' s of Böcher, t 
they went to Rice University in Houston and married two sisters, grand-
daughters of Sam Houston. Ford later became President of the MAA and 
Evans President of the AMS. Ford's Automorphic Functions, published 
in 1929 as an elaboration of a 1915 tract , is still considered outstanding 
today (see Bull. AMS 82 (1976) 218). Evans published two volumes in the 
AMS colloquium series: Functionals and their Applications (1918), and 
The Logarithmic Potential (1928). He moved to Berkeley as Chairman in 
1934, and built it up into one of our "big four" mathematical centers. 

However, all this happened long after 1914, and I want now to recall 
four leaders of a very different s tamp, whose constructive influence on 
American mathematics was strong during the years 1913-41. 

10. Topology takes root. During the decade 1910-1920, topology became 
the primary concern of several leading American mathematicians. Veblen, 
R. L. Moore, Alexander, and Lefschetz were especially influential converts 
to the subject, as I shall now try to explain. During the same years that 
G. D . Birkhoff shifted his center of interest to dynamical systems, Veblen 
changed his from projective geometry to topology. Thus in 1912-13, he 
established with J. W. Alexander a seminal duality theorem, whose proof 
used the (then novel) technique of considering homology groups mod 2 .* 
In 1916, he gave the colloquium lectures on Analysis Situs, bu t it was not 
until 1922 that these appeared in book form. 

In the meantime, he had finished the second volume of his Projective 
Geometry, a great classic whose preface still echoes Klein's Erlangen 
Programm and Hilbert 's Grundlagen der Geometrie. 

t [ l , p . 163.] Actually, Ford completed his Thesis in Paris under Humbert. 
• I t had been invented a few years before by H. Tietze, Monats. Math. Phys. 19 (1908) p. 49. 
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He had also been a leader in our mathematical World War I effort, 
having been in charge (with F . R. Moulton) of range tiring and ballistic 
work at the Aberdeen Proving Ground (after giving his AMS Colloquium 
Lectures on topology in 1916). His staff included Alexander, Bennett, 
Blichfeldt, Bliss, Dines, Franklin, Graustein, Gronwall, Har t , Haskins, 
Jackson, Milne, Mitchell, Ritt, Roever, and Vandiver,* all noteworthy 
mathematicians; Η. H . Goldstine [12, Ch. 9] has given an excellent first-
hand account of their roles. Both Veblen and Bliss published papers based 
on their contributions to this wartime work; even more notable was the 
contribution of F . R. Moulton, the Chicago mathematical as t ronomer .* In 
Ch. I l l of his New Methods of Exterior Ballistics (Univ. of Chicago Press, 
1926), he explained the so-called Adams-Moulton method, still the best 
multistep method for numerically integrating systems of ordinary differential 
equations. 

R . L . Moore. A second American topologist of note was R. L. Moore 
(1882-1974). Texan to the core, Moore was a rugged individualist whose 
1905 Thes is , t written under Veblen, was an extension of Veblen's 1904 
Thesis on the foundations of Euclidean geometry, written under Ε. H. 
Moore. In 1915, R. L. Moore made his debut as a topologist by extending 
Veblen's discussion of the Jordan curve theorem. This set the tone of his 
later research on the foundations of point-set topology, in which he treated 
the plane with especial affection.** His methods were highly original, and his 
results often anticipated (at least in special cases), theorems commonly 
attr ibuted to European mathematicians (e.g., Zorn's Lemma and Urysohn's 
metrization theorem). He encouraged originality in his students by forbidding 
them to read s tandard expositions, and requiring them to "work things o u t " 
by themselves in a t rue pioneer spirit instead. This unconventional proce-
dure was highly successful in producing research mathematicians; Moore's 
Ph .D. ' s included such important topologists as R. L. Wilder, Gordon T. 
Whyburn, and J. R. Kline (for many years AMS Secretary), Gail Young, 
R. H. Bing, Ε. Ε . Moise, Eldon Dyer and Mary Rudin. 

J. W. Alexander. Following his seminal 1913paperwith Veblen, Alexander 
published two or three others on combinatorial topology before writing a 

»See [1, p. 209], and L. E. Dickson, Bull. AMS 25 (1919) 289-311, esp. p. 296. 
• Moulton had stimulated Bliss' first published paper, and been AMS vice-president in 1915. 
tTrans. AMS 9 (1908) 487-512. G. D. Birkhoff s Basic Geometry and the author's "Metric 

foundations of geometry" (Trans. AMS 55 (1944) 465-92) are in the same tradition. For his 
treatment of the Jordan curve theorem see ibid. 16 (1915) 27-32. 

**His "Foundations of Point-Set Theory," Amer. Math. Soc , 1932, and Whyburn's "Analytic 
Topology," Amer. Math. Soc, 1942, give a good idea of Moore's interests. For a biographical 
sketch, see R. L. Wilder, Bull. AMS 82 (1976) 417-27. 
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P h . D . thesis which was, curiously, on complex analytic functionst and written 
under Gronwall, who had replaced G. D. Birkhoff at Princeton. Alexander 
also made most of the drawings for Vol. II of Veblen's Projective Geometry, 
and served under him at Aberdeen. 

In the 1920's, Alexander became an expert on knot theory, and extended 
his earlier duality theorem (with Veblen) to the ra-dimensional generalization 
by Brouwer of the Jordan curve theorem, the so-called Jordan-Brouwer 
Theorem (see Math. Annalen 71 (1912) 314-27; for Alexander's contributions 
see Trans . AMS 23 (1922) 333-49). 

Alexander continued to make original contributions to topology until 
World War I I . Thus Pontrjagin states that " the initiative for using contin-
uous groups in combinatorial topology belongs to J. W. Alexander and 
L. W. Cohen." It is for me a special personal pleasure to pay tribute to this 
charming and brilliant man, a millionaire with liberal political views and a 
rare collection of limericks, who was a frequent visitor at the von Neumann 
house when I was a guest there in the 1930's. Though he was nearly 25 years 
older, his spirit was so young that I thought of him as a near-contemporary! 

Lefschetz. Equally original, and far more influential on the international 
scene was Solomon Lefschetz (1884-1972). Born in Russia and educated in 
Paris, Lefschetz worked in industry for several years, losing both hands in 
an industrial accident before he turned to mathematics . He was 29 before 
his thesis " On the existence of loci with given singularities" was published 
(Trans. AMS 14 (1913) 23-41). He became famous six years later, when he 
won a prize in Paris for showing that algebraic homology underlay a relation 
of equivalence introduced into algebraic geometry by Severi, its acknowledged 
master. In Lefschetz' own colorful language, he "planted the harpoon of 
topology into the belly of the whale of algebraic geometry."Φ His prize paper 
was translated into English and republished, with minor modifications, in 
Trans . AMS 22 (1921) 326-482; its final form was a Borel monograph 
L Analysis Situs et la Geometrie Algebrique, Paris, 1924. 

In 1924, he joined Veblen and Alexander at Princeton, making it the 
world's leading center of topology. His Colloquium volume on "Topology" 
(1930) was an early fruit of this phase of his life; Paul Smith, A. W. Tucker, 
and R. J. Walker were even more important products. In the 1930's, Lefschetz 
played an even more active role as an international leader, inspiring Norman 

tSee Annals of Math. 17 (1915) 12-22. 
*S. Lefschetz, Bull. AMS 74 (1968) 854-79. Other reminiscences are in Amer. Math. Monthly, 

77 (1970) 344-50. Biographical sketches of Lefschetz have been written by L. Markus (Bull. 
AMS 79 (1973) 663- and W. V. D. Hodge, Roy. Soc. (1973). See also "Algebraic Geometry 
and Topology," R. H. Fox, D. C. Spencer, and A. W. Tucker (eds.), Princeton University 
Press, 1957, for other appreciations of Lefschetz' work. 
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Steenrod and Henry Wallman in the process—but I am getting ahead of 
myself (see §20). 

11. Cambridge: 1912-1941. During the years 1906-1941, a large fraction 
of our leading research mathematicians lived near either Chicago, where 
the University of Chicago and Northwestern are located; Princeton, where 
the Institute for Advanced Study became a neighbor of Princeton University 
in the 1930's; or Cambridge, the home of Harvard and M. I .T . I shall next 
record some impressions of faculty life in Cambridge, t where G. D . Birkhoff 
joined Bocher and Osgood in 1912.1 imagine that life at Princeton and North-
western followed much the same pattern. 

In retrospect, it seems unbelievably tranquil . The Harvard faculty still 
formed a cohesive group; most of its members lived within walking distance 
of Harvard and each other. Department meetings were held at the home of 
the Chairman, and most professors lunched at home; afternoon naps were 
not uncommon. Although most professors taught nine hours a week until 
1926, and probably worked much harder than their European colleagues,* 
there were few distracting administrative chores; in 1930, one efficient half-
time secretary was still able to type all the letters and research papers of the 
Mathematics Department . 

The open country was close by. Thus the banks of the Charles, which had 
been tidal flats until a few years before, were still in a state of nature , and 
the marshy outskirts of West Cambridge were not yet built up . Milk came 
in by horse and wagon from dairies in nearby Lexington and Lincoln, or by 
train from New Hampshire or Vermont. The pace of life was leisurely: a 
three months summer vacation at the seashore or among New England 
mountains and lakes was part of the normal rhythm. 

In this tranquil environment, G. D . Birkhoff developed his ideas about 
differential equations and dynamical systems from 1912 to 1920, occasionally 
taking time out to go to scientific meetings or to think about the four color 
problem. During these years Morse and Walsh came as students; Bocher 
and Byerly died, and W. C. Graustein joined the faculty. 

Around 1920, G. D . Birkhoff was promoted to a full professorship, and 
moved from a row house across from the Radcliffe dormitories to a 12 room 
house a stone's throw from stately Brattle St. Most full professors of that era 
had live-in maids and entertained at Victorian dinner parties; the Birkhoffs 
were no exception. Moreover the 250 or so tenured ( 'permanent ' ) faculty 
members knew each other, and faculty meetings were almost family gather-
ings, enlivened by the wit of familiar colorful personalities. There was a 
Shop Club, at which professors from the Law and Business Schools ex-

tWiener [22] gives earlier impressions of the Cambridge environment as he saw it. 
• See p. 51, footnote • . 
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changed informal accounts of their activities and interests with their col-
leagues from the Faculty of Arts and Sciences. 

Until World War II, the Harvard Mathematics Department was dominated 
by Harvard graduates such as Osgood, Coolidge, Huntington, G. D . Birkhoff, 
Walsh, Graustein, and Stone, all of whom were on the faculty in the 1930's. 
This made faculty interest in undergraduate teaching and advising very 
natural , and gave a strong sense of stability and continuity. Moreover re-
search was done quietly at home. Whereas today at least ten seminars in 
Cambridge compete for attention, each concerned with a different subarea 
of mathematical research, there was then only one weekly colloquium in 
Greater Boston. It was at tended also by research-oriented M. I .T . staff 
members and (often) by a contingent from Brown. 

M . I . T . The atmosphere of M. I .T . was very different. Located in indus-
trial East Cambridge, its faculty commuted from Belmont or Waverly. In-
dustrial problems and opportunities were its life's blood, and some of its 
graduates and staff built up substantial businesses in the Boston area, like 
the Dewey and Almy Chemical Co. and Arthur D . Little. 

One never felt isolated at either Harvard or M. I .T . Both universities 
were within minutes of downtown Boston by subway. For a 20<c round trip 
fare, one could get in 20 minutes to any of five or more legitimate theaters, 
as an alternative to a bird-watching walk. For $3.50, one could take the 
Fall River night boat to New York, arriving in good time for the AMS 
meetings unless there happened to be a bad fog. 

12. Four cousins. Harvard 's great mathematical strength during the 
years 1912-41 owed much to the intellectual, moral and financial support 
of President Lowell and three of his cousins. As a substantial beneficiary of 
this support , I take special pleasure in recalling their personalities and 
influence. 

Abbott Lawrence Lowell. You will recall that Charles W. Eliot, Harvard 's 
president from 1869 to 1908, was a chemist who had worked in the Nautical 
Almanac Office. His successor Abbott Lawrence Lowell (1860-1945), 
Harvard 's president from 1908 to 1933, was much more mathematically 
minded. A well-born Bostonian who majored in mathematics at Harvard, 
he was deeply impressed by Benjamin Peirce, " the most profoundly inspiring 
teacher I ever h a d " [5, p . 271]. He graduated summa cum laude, and his 
thesis was published in the Proceedings of the American Academy of Arts 
and Sciences in Boston (vol. 13 (1877) pp . 222-50), eight years before 
Ε. H. Moore's Ph .D . Thesis was published in the Transactions of the 
Connecticut Academy of Arts and Sciences. 

Lowell went on into law and government; his book about British gov-
ernment and Lord Bryce's book on American government were considered, 
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for many years, to be the best books on their respective subjects. His con-
structive influence on mathematics began shortly after he succeeded Eliot. 
He appointed a committee, chaired by his sister's husband W. L. Pu tnam, to 
reform the Harvard mathematics curriculum. Following a broad hint from 
Lowell, this committee recommended that the normal freshman course 
should consist of analytic geometry and the calculus, which Lowell 
considered (along with the phonetic alphabet and the Hindu-Arabic decimal 
notation for numbers) to be one of the greatest inventions of all t i m e . t 
Lowell followed up his initial reform by requiring every Harvard under-
graduate to take at least one course in mathematics or philosophy, and 
by advising class after class of entering freshmen in his welcoming 
address that there was no better preparation for the law than the study 
of mathematics . 

The boldness of this step can be better appreciated if one realizes 
that in 1911, any course above first-year calculus was considered an ac-
ceptable part of graduate study [9a]. Even in the 1930's, mathematics 
concentrators in many small colleges only got to the calculus in their 
senior year! But Lowell was never a traditionalist; his collected essays 
on education were published under the title "At War with Academic 
Traditions in America ." 

In 1925, Lowell introduced tutorial instruction, aimed at making Harvard 
undergraduate education less imitative and more reflective. The Harvard 
Mathematics Department agreed to participate in the tutorial system. By attri-
buting 3 hours a week to the supervision of graduate students and 1.5 hours to 
tutorial, it got its teaching load reduced from 9 to 4.5 classroom hours a week. 
This was almost unique in our country at that t ime. Thus J. C. Fields of Fields 
Medal fame had complained in 1919that theaverage U. S. or Canadian college 
professor taught 400 hours a year, as compared with 100 in the more advance 
European countries.* 

In 1933, Lowell implemented his most valuable idea: the establishment of a 
Society of Fellows where outstanding men in their twenties would get every en-
couragement to develop their own ideas.* Whereas the German P h . D . system 
had trained men to do research, Lowell designed and endowed Harvard 's 
Society of Fellows to free outstanding young men to do research. I shall de-
scribe its success later (§19). 

William Lowell Putnam. The Lowell genes were strong; A. L. Lowell's 
brother Percival was the discoverer of the planet Pluto,** and his sister Amy 

t J . W. Gibbs expressed a similar opinion about matrix algebra. 
•J . C. Fields, "Universities, research, and brain waste," (Presidential Address). Trans. Royal 

Canadian Inst. (1920) 3-27. 
*Ulam has described its stimulating atmosphere in [29, Ch. 5|. 

**See W. G. Hoyt, "Lowell and Mars," Univ. of Arizona Press, 1976. 
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was a well-known poetess. But most memorable for mathematicians was 
his brother-in-law and cousin William Lowell Pu tnam (1861-1924), who 
graduated from Harvard with high honors in mathematics, and was for 
years the devoted and hospitable chairman of the Visiting Committee of 
Harvard's Mathematics Department . 

In partial fulfillment of W. L. Putman 's expressed wish to make excel-
lence in scholarship as honorable among undergraduates as athletic prow-
ess, his widow and her sons cooperated with G. D . Birkhoff in setting 
up the Putnam Competition in essentially its present form in 1938. I will 
not repeat here my attempt [8] at reconstructing the background of this 
Competition, but will add that W. L. Putnam's tradition of hospitality 
has been maintained to this day by the George Putnams, his son and 
grandson.* 

J. L. Coolidge. Among A. L. Lowell's cousins was also a prominent 
mathematician, Julian Lowell Coolidge (1873-1954), who was incidentally 
a descendant of Thomas Jefferson. After teaching Franklin D . Roosevelt 
and others at Groton, and serving as a Rough Rider under Theodore 
Roosevelt in the war of 1898, Coolidge became a Harvard instructor in 
1900. He studied geometry abroad with Kowalewski, Study, and Corrado 
Segre in 1902-4, then returning to Harvard where he became an assistant 
professor in 1908, at age 35. 

Since D . J. Struik has ably summarized elsewhere Coolidge's subsequent 
mathematical career, 1 1 shall only recall that he was President of the MAA 
and founder of the Chauvenet Prize. He was also vice-president in 1918, 
and chief fund-raiser for the AMS in the 1920's (see §13). His many books 
(published by the Oxford University Press) were lively and widely read, 
his Probability being translated into German. 

After he became the first Master of Lowell House* in 1930, he devoted 
his main energies to the human aspects of undergraduate education; I was 
his Senior Tutor there during 1936-38. However, he continued to teach 
mathematics, as well as writing books about the history of mathematics . 
His History of Geometrical Methods (1940) is one of a very few dealing 
on a technical level with mathematical developments during the 19th and 
20th centuries. 

G. E . Roosevelt. The last of the gifted and public-spirited cousins who 

*Mrs. W. L. Putnam showed the same spirit of friendly hospitality by giving the G. D. Birk-
hoffs the use of her summer home at Manchester, Mass., in the summer of 1927. 
tAmer. Math. Monthly 62 (1955) 669-82. 
• This was one of the two completely new dormitories built when Harvard's House Plan came 

into being. The money was provided by Edward Harkness, but I have been told that Lowell 
had to advance some cash to avoid liquidating oil stocks at a very low price after the stock 
market crash. 
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actively fostered mathematics (especially Harvard mathematics) from 1910 
on was George Emlen Roosevelt. His father had asked him to join the 
family banking firm when he graduated from St. Marks , but G. E. Roose-
velt secured permission to go to Harvard if he stayed on the honor roll. 
After graduating summa cum laude in mathematics, he served under W. 
L. Pu tnam on the committee that made calculus s tandard fare for fresh-
men. From that time on, he was a dynamic and generous member of our 
Visiting Committee; I remember his lecturing on navigation to our Math . 
Club in the best tradition of Nathaniel Bowditch—he was Commodore of 
the New York Yacht Club, and often raced to Bermuda. 

His many activities included managing of the estate of Sara Delano 
Roosevelt (about which he had an amusing interchange of letters with her 
son F . D. R. when the latter abandoned the gold s tandard) . He was also 
active in the affairs of N.Y.U. ; Richard Courant (see §21) became his good 
friend, and he was acting president of NYU during the late 1950's. 

I had the privilege of conversing many times with Coolidge, Lowell, George 
Putnam, Sr., and G. E. Roosevelt. I hope that you will read enough b e -
tween the lines of what I have written to appreciate their spirit, and how 
much our country owes to men like them. Though it is dangerous to impute 
motives to other people, I think it safe to say that it was love of and pride 
in their country and Harvard, a general spirit of philanthropy, and a 
personal appreciation of the orderliness and beauty of mathematics , tha t 
impelled these cousins to promote American mathematics so fruitfully 
during their lifetimes. 

13. Dawn of an era. By 1920, the war was over and a new era was dawning. 
In 1903, U . S . mathematicians had ranked Ε . H. Moore, Hill, Osgood, 
Bocher, Bolza, Newcomb, Morley, E. W . Brown, H. S. White , and Dickson 
(in that order) as best. Of these, the geometer Frank Morley (1860-1937) 
was AMS president; all the others except Bolza had already served, and a 
new generation was ready to take over. 

Across the Atlantic, they saw a changed Europe. Felix Klein, Hilbert, 
Weyl, and other mathematicians from the defeated Central Powers were 
excluded by the victorious Allies from participating in the International 
Mathematical Congresses of 1920 (Strasbourg) and 1924 (Toronto). P h . D . 
training in Germany was no longer attractive, let alone a " m u s t " . 

The most prominent mathematicians of the new generation were Dick-
son, Bliss, Veblen, and G. D . Birkhoff, all Chicago Ph .D. ' s . Of these, 
Dickson had preceded Morley as AMS president. His prodigious output 
now exceeded 200 research papers; in 1914 alone, he had published his 
1913 colloquium lectures on Invariants and the Theory of Numbers and 
two other monographs. But most notable among his pre-1920 contribu-
tions to number theory was his 1600 page History of the Theory of Numbers 
(3 vols.), published in 1919. 
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His research in the 1920's centered around number theory in linear 
associative algebras (as defined by Benjamin Peirce). He presented his 
ideas in his book on Algebras and Their Arithmetics (1923) and its revision 
in German translation (1927). These were the best books on the subject at 
the t ime; see also Proc. Int. Math . Congress Toronto (1924), vol. i, pp . 
95-102. Likewise, Dickson's First Course in the Theory of Equations (1922) 
introduced a generation of American students to this subject. 

Although Dickson served as President of the American Mathematical 
Society during the war years of 1917-18, he was never an "organization 
m a n , " preferring bridge, tennis and billiards to tedious committee meetings. 
In a similar spirit, he resigned from the American Philosophical Society 
and National Academy of Sciences, retaining membership only in the 
American Academy among our three major honorary scientific societies. 
He was much less active in AMS affairs than Bliss, Veblen, or G. D. Birk-
hoff, concentrating increasingly on his own research and that of his stu-
dents. From 1921 to 1937 he wrote eight books and 80 research papers; 
his Ph .D. ' s (some earlier) included C. C. MacDuffee, A. A. Albert, Gordon 
Pall, Mina Rees, R. D . James, Ralph Hull, and 58 others. 

A DECADE OF EXPANSION 

14. The new establishment. In 1921, the AMS entered a new phase, with 
the resignation of F . N. Cole as AMS Secretary and Editor of the Bulletin, 
of which volume 21 was dedicated to him. 

R. G. D . Richardson. Hedrick took over Cole's editorial duties, and 
R. G. D . Richardson (1878-1949)* replaced him as AMS Secretary. A distant 
relative of Simon Newcomb, he taught in Nova Scotia high schools for 
some years before going to Yale, where he got his P h . D . in 1906 with 
Pierpont. After visiting Göttingen in 1908-9, he wrote a number of papers 
on differential equations, among which most interesting in retrospect is 
his "A new method in boundary problems for differential equa t ions . " t 
This foreshadowed the later difinitive paper by Courant, Friedrichs and 
Lewy, by using difference approximations to establish the existence of 
solutions of elliptic and hyperbolic problems. 

Like Fine, Hedrick and many other American mathematicians of his and 
earlier generations, Richardson was more notable as a builder of institutions 
than as an individual research mathematician; for over twenty years, he 
gave unstintingly of his energy and wisdom, cooperating with Bliss, Veblen, 
G. D. Birkhoff and others in strengthening the AMS. 

•See Bull. AMS 56 (1950) 256-65. 
tTrans. AMS 18 (1917) 489-508. 
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The triumvirate. Much as Ε. H. Moore, Osgood, Bocher, and Fine were 
the leading figures in American mathematics from 1900 to 1914, so Veblen, 
G. D. Birkhoff, and Bliss were its principal leaders from 1921 to 1941. 
All native midwesterners and Chicago Ph .D. ' s , they represented our three 
most important research centers during this period: Princeton, Harvard, 
and Chicago. They inaugurated their period of leadership by serving as 
Presidents of the American Mathematical Society for three successive 
terms, from 1921 through 1927. Bliss (1876-1951) was four years older 
than Veblen, and Veblen (1880-1960) four years older than Birkhoff, and 
they served in the order of their seniority. 

The first eight years under the new establishment constituted a remark-
able period of solid expansion for the Society: Its membership increased from 
770 in 1920 to 1758 in 1928, and its budget from $8865 to $28,400. To-
gether with Veblen, Bliss provided much of the initiative for this great 
progress. Since it has been eloquently described by Archibald in [ 1 , pp . 
29-31] . I shall not discuss it further here. 

Instead, I want to describe briefly how these men, by this time in their 
forties, exemplified the ideals of the AMS in their own research during 
these years. 

Bliss and Veblen. In 1921, Bliss had just finished writing up the adjoint 
method for correcting trajectories he had invented while at Aberdeen (see 
§10), t and was polishing his notes on the calculus of variations. Some of 
these were to be published as the first in the series of Carus monographs 
(see §9), of which Slaught had made Bliss chief editor, and which contri-
buted notably to the education of American graduate s tudents . 

In addition, he wrote some 20 papers and several books, some expository, 
during the years from 1920 to 1936 (by which time he was sixty). These 
included his AMS Colloquium Lectures on Algebraic Functions (1933) 
and a few related papers , but the calculus of variations (especially the 
Problem of Bolza) continued to occupy the center of his thoughts . His final 
Lectures on the Calculus of Variations, presenting in book form the 
final distillation of many sets of mimeographed lecture notes, would not 
be published until 1946. In the meantime, he had supervised the theses 
of Graves, Düren* McShane, M. S. Hestenes, A. S. Householder, and 
41 other Ph .D. ' s . 

Like Bliss, Veblen had been distracted by his war work at Aberdeen, 
and he devoted much time to his AMS presidential duties. Perhaps for 
this reason, he increasingly let others share in developing his ideas. More-

tJour. U. S. Artillery 51 (1919) 296-311 and 445-91; Trans. AMS 21 (1920) 93-106. 
• For Duren's impressions as a graduate student in the 1920's, see Amer. Math. Monthly 83 

(1976) 243-8. 
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over from topology, he moved on to differential geometry during the mid-
1920's, perhaps attracted (like many of his contemporaries) by the idea 
of "geometrizing physics" by a suitable extension of Einstein's general 
relativity. His most notable students during this period were Τ . Y. Thomas , 
the logician Alonzo Church, and J. H. C. Whitehead, with whom he wrote 
Cambridge Tract #29, On the Foundations of Differential Geometry. This 
contains in Chapter VI a set of axioms for global differential geometry, 
vaguely foreshadowing modern manifold theory. 

G. D . Birkhoff. But it was above all G. D . Birkhoff who exemplified 
the research ideals of the AMS during the 1920's. For a decade after his 
great t r iumph in proving Poincare's geometric theorem, he was mainly 
advancing the general theory of dynamical systems with new methods. 
Notable among these was his "minimax method," whose extensions by his 
student Marston Morse I shall discuss shortly. For this work, Birkhoff 
was awarded the first Böcher Prize, after giving the AMS Colloquium 
Lectures in 1920. An expanded and matured version of these is contained 
in his Dynamical Systems, published in 1927. Here he uses compactness 
arguments involving a- and ω- limit points to establish the existence of 
almost periodic "central motions" in any dynamical system. In 1928, he 
and Paul Smith pointed out the special properties that measure-preserving 
transformations had when they were "metrically transitive," a key concept 
of ergodic theory often referred to as "ergodicity." 

During these years, his scientific interests extended to other areas. Thus 
he proved with O. D. Kellogg (who lived next door)* the first fixed point 
theorem in function space. This foreshadowed the Leray-Schauder theory 
that was to come a decade later. In the direction of physics, he wrote two 
original books on Einstein's then revolutionary theories of relativity. He 
also invented a "perfect fluid", from which he deduced "a formula of the 
Balmer type for the frequencies" of natural oscillation of a hydrogen a tom. 
For this work, published in 1927, he received the 1926 AAAS prize. 

In 1926, the Birkhoffs also made their first trip to Europe, staying there 
nearly eight months on sabbatical leave. One of G. D . Birkhoffs missions 
was to survey European mathematical centers with special reference to 
strengthening their ties with the physical sciences. On the basis of his 
recommendations the International Board of the Rockefeller Foundation 
made grants of $275,000 to Göttingen and $322,250 to the University of 
Par i s , t thus partially repaying a long-standing cultural debt. 

This 1926 trip inaugurated a long period of international activity during 

•For Kellogg's work, see G. D. Birkhoff, Bull. AMS 39 (1933) 171-7; [5, iii, 537-43). 
tSee Chapter 12 of Raymond B. Fosdick, The Story of the Rockefeller Foundation. Harper, 

1952, and W. Weaver, "Early support for mathematics from Rockefeller agencies." 
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which Birkhoff visited and was honored in countless countries. Already 
in 1928, Harvard financed a trip around the world, during which he studied 
and collected oriental music to test his original ideas about the quantitative 
psychology of aesthetics. (For a definitive statement of these ideas, see his 
book Aesthetic Measure, Harvard University Press, 1932.) 

The Bologna Congress. The researches of Veblen and Birkhoff were 
honored by invitations to give hour addresses at the 1928 International 
Congress.* Veblen's talk summarized his views about differential geometry, 
emphasizing the relevance of the infinitesimal parallelism of Levi-Civita 
to Einstein's general relativity, and suggesting that Felix Klein's Erlanger 
Programm had become played o u t . t 

Birkhoffs talk on "Quelques elements mathematiques de f a r t " sum-
marized his ideas about aesthetics. Given at a special session at Florence in 
the beautiful Palazzo Vecchio, and heralded by two trumpeters in medieval 
costumes, it involved no mathematics beyond arithmetic! However, Hada-
mard had already paid tribute to Birkhoff s technical work, presenting 
the Birkhoff-Kellogg fixed-point theorem in function space as the crowning 
achievement of functional analysis up to that t ime. American mathematics 
had indeed come a long way since 1891. 

The leadership and cooperation that I have been describing were to last 
for at least another decade, as I shall explain later. But the impression to 
leave with you now is that of a closely knit American Mathematical Estab-
lishment during the years 1921-41, headed by four very broad and distin-
guished men, united by bonds of personal friendship which dated back to 
the Chicago of Ε. H. Moore in the early 1900's, and included wives. Thus 
the Birkhoffs occupied the Veblen summer cottage in Brooklin, Maine, in 
the summer of 1925. Walking barefoot from this cottage through a woods 
path, one came in 5 minutes to the cottage of Nobel Prize winner Davisson, 
whose wife Lottie was Mrs. Veblen's sister. The widows of G. D . Birkhoff, 
Veblen, and Richardson were still corresponding intimately and affection-
ately in the 1970's. 

The mathematical world which I am trying to describe was truly on a 
'human scale'. 

15. Morse and Stone. During his years at Harvard, G. D . Birkhoff had 
a remarkably distinguished list of Ph .D . students, including Joseph Slepian, 
Marston Morse, H. J. Ettlinger, J. L. Walsh, Rudolph Langer, D . V. 
Widder, Β. Ο. Koopman, Marshall Stone, C. B. Morrey, and Hassler 

• Birkhoff and Veblen were again to be invited American speakers at the Oslo Congress eight 
years later—this time along with Wiener and Oystein Ore, an Oslo native. 

fAtti Congr. Intern. Mat. Rome, vol. i, pp. 179-89; see Veblen's Rice Institute Lectures on 
Modern Geometry (Rice Pamphlet XXI (1934)), for a more complete exposition of his ideas. 
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Whitney among others. Four of these became AMS Presidents (Morse, Stone, 
Walsh and Morrey), and five achieved tenure at Harvard (Morse, Walsh, 
Stone, Whitney, and Widder) , incidentally contributing much to my own 
education, t Two of them (Morse and Whitney) later transferred to the Insti-
tute of Advanced Study, while a third (Stone) revamped the Mathematics 
Dept . of the University of Chicago after World War II . Though all eight of 
those listed had distinguished careers, the most influential during the decades 
1921-41 were Morse and Stone. 

After getting his P h . D . in 1917, Harold Marston Morse (1892-1977) served 
in World War I, first in the Ambulance Corps and then in the Artillery. 
When he returned, he first studied (at Cornell) the topological structure of 
the set of geodesies on a general closed surface. Then, around 1924, he began 
laying the foundations of what is today called Morse theory.* Its original stim-
ulus was the minimax principle of G. D . Birkhoff, which Morse extended 
into a celebrated series of "Morse inequalities" relating the numbers of crit-
ical points of specified type that a function could have on a global manifold 
to the topology of the manifold. During the next decade, Morse developed 
his methods further into a "calculus of variations in the large ," written up 
as an AMS Colloquium volume (1934). Bochner has desc r ibed t t how this 
then new topological approach was quite beyond the grasp of Carätheodory, 
illustrating the extent to which American mathematics was forging ahead 
by this t ime. 

While at Harvard, Morse supervised the P h . D . Theses of G. A. Hed-
lund, Μ. H. Heins, Herbert Robbins, S. S. Cairns, Walter Leighton, and 
Arthur Sard (besides stimulating me as an undergraduate) . Shortly after 
his Colloquium Lectures were published, Morse left Harvard for the Insti-
tute for Advanced Study, where he influenced R. H. Fox, Richard Arens, 
Pesi Masani , and James Jenkins among others. 

Stone. The first published research of Marshall Harvey Stone (1903- ) 
dealt with series expansions in the tradition of Bocher. Around 1928, he 
turned his attention to the theory of linear operators on an abstract Hilbert 
space, simultaneously with von Neuman. He soon proved several sharp new 
theorems, of which his spectral resolution of one-parameter unitary groups 
is most famous. He incorporated the contempory work of von Neumann 
(q. v.) on self-adjoint operators, a generalization of the Hahn-Hellinger unitary 
equivalence theory, and many new results of his own about differential 
operators into the first major treatise on operator theory, entitled Linear 

tSince all are very much alive, I hope they will excuse the temerity of my summary remarks. 
•See TAMS 27 (1925) 345-96; 30 (1928) 213-74; 31 (1929) 379-404; and 32 (1930) 599-631; 

also Math Annalen 103 (1930) 52-69. 
t t S . Bochner, Amer. Math. Monthly 81 (1974) 827-52. Since Carätheodory's Variationsrech-

nung is a profound and highly respected treatise, Bochner's recollection is highly significant. 



Some Leaders in American Mathematics: 1891-1941 59 

Transformations on Hilbert Space (Amer. Math . S o c , 1930). This and 
Banach's Theorie des Operations Lineaires (Warsaw, 1933) were the bibles 
of the functional analysts of the 1930's. 

By 1933, Stone was breaking new pathways in general topology (point-set 
theory) and Boolean algebra, a subject which had previously been studied 
mostly in connection with logic and postulate theory. He was the first to 
rigorously subsume the theory of Boolean algebras under the general theory 
of rings, (a "Boolean r ing" is just a ring with unity in which every element 
is idempotent), by establishing a simple 'cryptomorphism' between Boolean 
algebras and Boolean rings. He then established a much deeper cryp-
tomorphism between Boolean algebras and one-dimensional compact spaces 
(today called "Stone spaces"). 

J . L. Walsh. Another distinguished Ph .D . of G. D. Birkhoff was Joseph 
Leonard Walsh (1895-1973). Though a contemporary of Morse, his career 
and mathematical style were very different. He taught at Harvard from 1916, 
when he taught Freshmen as a "section m a n " under the plan that had just 
been organized by the W. L. Putnam Committee (see §12), until 1966, when 
he went to the University of Maryland. A native Marylander, he was a 
vigorous man of outstanding courage who served as deck officer in two world 
wars. He also volunteered for duty as a policeman during a month long 
police strike in the 1920's, patrolling one of Boston's more dangerous districts. 

For over 50 years after returning from World War I, Walsh devoted his 
energies to classical analysis, teaching complex analysis in the spirit of 
Weierstrass and Osgood. The orthogonal "Walsh functions" with range ± 1, 
constant on binary intervals, were one of his first inventions (Amer. J. Math . 
45 (1923) 5-24). But the bulk of his work was on interpolation and approx-
imation theory; an important early result was that any function harmonic 
on a compact domain can be uniiormly approximated arbitrarily closely by 
harmonic polynomials. Runge had proved a corresponding extension of the 
Weierstrass approximation theorem to complex polynomials two decades 
earlier. 

Although approximation theory had been of interest to Cauchy, Hermite, 
Chebyshev, Weierstrass, Hadamard , and de la Vallee-Poussin, the New 
Mathematicians of the 1930's (see §20), 1940's and 1950's had little time 
for such special results, t As a result, approximation theory became less and 
less fashionable during these decades, and it was not until the late 1960's 
that the value of Walsh's research became generally appreciated (see §23). 

Both Stone and Walsh had many distinguished students. To mention only 
a few of the most outstanding, Stone supervised the theses of George Mackey, 
John Calkin, Edwin Hewitt, H. MacNeille, R. V. Kadison, and Bernard 

tCf. J. Dieudonn6, Math. Revs. 12 (1950) 249-50. 
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Galler (later President of the Association for Computing Machinery); while 
Walsh supervised those of Morris Mardin, J. L. Doob, Μ. H. Heins, L. H. 
Loomis, R. S. Varga, and I. E. Block (a founder of the Society for Indus-
trial and Applied Mathematics and longtime mainstay of its publications). 

16. Norbert Wiener. Norbert Wiener (1894-1964) became one of the 
most original and stimulating American mathematicians of his generation. 
His two autobiographical books [22] and [23] give a candid and vivid pic-
ture of his career, and of the contemporary mathematical scene as well. 
Unfortunately, he was too often spiteful, and these books must be corrected 
for astigmatism. Fortunately, the sympathetic but honest biography of Wiener 
in [24, pp . 1-32] by Norman Levinson, his best student, gives the necessary 
correction. (See also [29, p . 92 ff].) 

Trained by his father to be a prodigy, Wiener's first mathematical venture 
was into mathematical logic. After graduating from Tufts College at fourteen 
he entered the Graduate School of Harvard University, where his father was 
a distinguished (if mildly eccentric) professor of Slavic languages. Abbott 
Lawrence Lowell, by coincidence, became Harvard's President that same 
fall (1909).t 

After a year trying his hand unsuccessfully at zoology and botany, then a 
year at Cornell (to which he went from Boston via interurban trolley!) Wiener 
returned to Harvard as a 16 year old graduate student in philosophy. Here 
he became interested in postulate theory by his father's friend Ε . V. 
Huntington, and his interest led to a P h . D . in mathematical logic in 1913. 

He then went to Cambridge University, intending to study with Bertrand 
Russell (1872-1970), the co-author with A. N. Whitehead of the classic 
treatise on symbolic logic, Principia Mathematica. There he also met G. H. 
Hardy (1877-1947), the great British analyst and analytic number theorist, 
" the mathematician who was to have the greatest influence on me in later 
years ." 

Wiener went through many curious wartime experiences, which he de-
scribes at length in [22]. Most relevant is his stay at the Aberdeen Proving 
Ground [22, p p . 254-63 and 294-5] , where he met Veblen, Bliss, Gronwall, 
Alexander, Ritt, and Bennett, as well as his future brother-in-law, Philip 
Franklin of M.I .T .** 

M . I . T . Wiener joined the M. I .T . faculty in 1919. The next summer he 

tWiener's distorted description of Lowell [22, pp. 125-6] is frightening! His malicious cari-
catures of Felix Klein [22, pp. 209-10] and [23, pp. 96-7], Osgood [22, pp. 231-2]. G. D. 
Birkhoff [23, pp. 27-28] and Courant [23, p. 96 and pp. 114-6] are in the same vein, as is 
his verdict that Landau "had neither taste nor judgment nor philosophical reflection." 

**Had it not been for the 1919 influenza epidemic, Wiener's brother-in-law would have been 
Harvard mathematician Gabriel Marcus Green instead! 
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went to Europe (for the fourth time; he would go again in 1922, 1924, and 
1925), to attend the International Mathematical Congress in Strasbourg. 
His impressions of this [23, pp . 66-68] make lively reading; thus he describes 
Camille Jordan reminiscing during group walks about " the great days when 
Cauchy was lording it over French mathematics and forcing all the younger 
men to pay t r ibu te . " (In the 1920's and 30's this role was played by Picard!) 

Before this Congress, Wiener spent some weeks following Fre'chet around. 
Though he was not attracted by Frechet 's topological foundations of func-
tional analysis, he was inspired to define the notion of a Banach space at 
the same time as Banach [23, p . 60]. Curiously, in their search for extreme 
generality neither Frechet nor Ε. H. Moore had ever formulated the simple 
concept of an abstract Hilbert space. F. Riesz had likewise collected together 
the defining properties of a Banach space, t but had not given a name to 
linear spaces satisfying them. Frechet also introduced Wiener to the pro-
babilist Paul Levy, whose ideas about Brownian motion Wiener surely found 
stimulating.* 

At M. I .T . , Wiener finally found a congenial environment. Within five 
years, he had written two important papers on the Dirichlet problem under 
the influence of Η. B. Phillips and O . D . Kellogg, t t and (most important) 
had constructed a rigorous measure-theoretic model for Brownian motion. 
Apparently Wiener's attention was called to the problem of constructing 
measures in function spaces by I . A. Barnett , a P h . D . of Bliss who was 
familiar with the Ε. H . Moore tradition.** 

Wiener then extended his ideas to prove rigorously that the autocorrelation 
function, introduced by G. I. Taylor* to describe turbulence, was the Fourier 
transform of the energy density. The connection is explained in Wiener 's 
famous 1930 paper on 'generalized harmonic analysis.' Three years later, 
he wrote a related paper on 'Tauberian Theorems' (Annals of Math . 33 
(1932) 1-100), in which he proved results more powerful and general than 
those of his teachers Hardy and Littlewood. For this work, he shared the 
Bocher prize with Morse in 1933. 

Fortunately, Wiener's many-sided original contributions have been care-
fully reviewed in [24].** I shall only mention further the Wiener-Hopf theory, 
and his determination (with Paley) of which transfer functions (gain and 

tActa Math. 41 (1918) 71-98. 
• See J. P. Kahane in [9, pp. 595-600], where reference is made to Paul Levy's autobiography. 

t t J . Math. Phys. MIT (1923) 105-24, and 3 (1924) 127-47. The first paper, like that of Rich-
ardson, exploited the 5-point difference approximation to the Laplace equation. 

••[22, p . 274] and [23, p. 174]. The most relevant previous paper was by Frechet, Bull. Soc. 
Math. France 43 (191 ) 249-67. Frechet's student Gateaux was killed in the war. 

*Proc. Lond. Math. Soc. 20 (1921) 196-212; Wiener's paper was published in Acta Math. 55 
(1930). Wiener refers to Taylor, a leading scientist of his time, as an "amateur with a pro-
fessional competence" [23, p . 37]. 

**See also Wiener's Selected Papers, M.I.T. Press, 1964. 
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phase lag) are "realizable" or predictive (i .e., make the output depend 
only on past input) . 

Wiener was also notable as one of the few Americans of his t ime who was 
outstanding in both pure mathematics and his applications. How much of 
this can be attr ibuted to his varied and cosmopolitan early background, and 
how much to his continuing contacts with non-mathematicians such as 
G. I. Taylor, it is hard to say. But it is clear that he interacted most fruit-
fully with engineers on the M. I .T . faculty. Thus Harold Hazen and others 
built in 1930 an instrument for measuring the autocorrelation function 

R(T) =x(t)x(t + τ)/ x2(t), 

used by Wiener to define the spectrum of a function. 

Bush. Another electrical engineer with whom Wiener interacted fruitfully 
was Vannevar Bush. An expert in electrical circuit theory, Bush liked to 
characterize himself as a Yankee inventor. His most notable invention was 
the differential analyzer, an electromechanical analog machine that solved 
systems of ordinary differential equations with 3 digit accuracy. Much as 
later electromechanical and electronic digital computers can be regarded as 
American technological implementations of ideas of Babbage, so the Bush 
differential analyzer was a more practical realization of ideas of Kelvin and 
his brother James. For a fuller account I refer you to Bush's 1935 Gibbs 
Lecture, to its 1966 sequel by Derrick Lehmer,* and to Wiener 's remarks 
in [23, p p . 136-9]. 

In spite of the great importance of Wiener 's personal contributions to 
applied mathematics , none of his students seems to have become an impor-
tan t industrial mathematician. In constrast, at least three of G. D . Birkhoff s 
Ph .D. ' s did: Joseph Slepian, the inventor of the magnetron, was prominent 
at Westinghouse; Μ. H. Slotnick became research director for the Humble 
Oil Co.; and H. Poritsky was an active research worker at General Electric. 

17. Applied mathematicians. During the 1920's and 1930's, few American 
mathematicians paid much attention to contemporary engineering develop-
ments . Although they used the new concepts of relativity and quan tum 
mechanics as stimuli for mathematical speculations, the solution of special 
problems bored them. This led to a paradox: while American industry was 
growing by leaps and bounds, our academic mathematicians were taking 
less and less interest in it. Thus Thorton Fry [11, p . 10] estimated tha t in 

•Kelvin's original papers appeared in Proc. Roy. Soc. A24 (1876) 262-75; his ideas were 
built into a tide predictor by our Coast and Geodetic Survey. The Gibbs Lectures cited 
were published in the Bull. AMS 42 (1936) 649-70, and 72 (1966) 739-50. 
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1940 only about 150 mathematicians were employed in American industry, 
"most of whom were trained as physicists or (electrical or mechanical) 
engineers, but had gravitated into their present work because of a strong 
interest in mathemat ics" . 

Nevertheless, a few American-trained men did make notable contributions 
to applied mathematics during the decades 1911-41. I have already men-
tioned E . W. Brown; I shall now mention some others. 

Ε. B. Wilson. A most successful and versatile applied mathematician was 
Edwin Bidwell Wilson (1888-1964). After graduat ing from Harvard in 
1899, Wilson went to Yale on Osgood's advice. There he discovered J. Wil-
lard Gibbs, whose eminence was recognized by B. O. Peirce, bu t not (ap-
parently) by Osgood . t He helped Gibbs write his famous Vector Analysis, 
which expounded Gibbs ' ideas about vectors and matrices ("dyadics"), and 
made Hamilton's quaternions obsolete almost overnight. 

He then went to M. I .T . , where he was assigned the job of organizing the 
first course in aeronautics ever taught a t M. I .T . , if not in our country. This 
was only a few years after the Wright brothers made their first successful 
flight, and only a decade or so after Simon Newcomb was arguing that air-
planes were a scientific impossibility.* 

Wiener mentions the encouragement he got from Ε. B. Wilson, then a 
professor of physics, when he first went to M . I . T . in 1920 [20, p p . 71-72] . 
Not long after, Wilson moved to the Harvard School of Public Health as an 
applied statistician. Among his many other distinctions, he served as 
Managing Editor of the Proceedings of the National Academy of Sciences 
from its inception in 1915 until 1964, when he was succeeded by Saunders 
Mac Lane. 

Statistics. It is hard to realize today, when many Divisions of the Math-
ematical Sciences include Departments of Applied Mathematics , Statistics, 
and Computer Science, how little academic recognition was given to any of 
these fields in the 1920's. 

Thus H. L. Rietz of the University of Iowa was one of the very few math-
ematical statisticians in the 1920's; i there were only actuarial statistics, 
agricultural statistics, economic statistics, educational statistics, and public 
health statistics, sharing a very loose bond of common theory. Even in the 
1930's, the development of quality control by Shewhart took place at the 

tSee Ε. B. Wilson's "Reminiscences of Gibbs," Bull. AMS 37 (1931) 401-16. On pp. 414-5 
of this article, Wilson criticizes the exclusive concern of the AMS establishment with pure 
mathematics. 

•Even in the early 1920's, I remember G. D. Birkhoff gazing in admiration when he heard a 
plane flying overhead, in much the same way that people gazed at the first Sputnik in 1959. 

• In the Preface of his Mathematical Statistics, he says "considerable portions of this mono-
graph can be read by those who have relatively little knowledge of college mathematics." 
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Bell Telephone Labs. , not at a university, and the work of such mathematical 
statisticians as Harold Hotelling and S. S. Wilks went almost unnoticed by 
most mathematicians. 

Mason and Weaver. Two other important figures in American applied 
mathematics were Max Mason (1877-1961) and Warren Weaver (1894-), 
two friends who co-authored a distinguished book The Electromagnetic Field. 
In some ways, the careers of these men of action recall those of the first 
AMS presidents.* 

Mason wrote his P h . D . Thesis on boundary value problems with Hilbert. 
After giving the AMS Colloquium Lectures in 1906 (with Ε. H. Moore), 
Mason turned to physics but did not publish. However, he showed his mettle 
again in World War I by developing an extremely effective submarine de-
tector called the MV-tube. A few years later, he became President of the 
University of Chicago; then head of the Natural Sciences Section of the 
Rockefeller Foundation, where Weaver succeeded him in 1932. 

Shortly after being appointed, with the full backing of Mason, Weaver 
persuaded the Foundation to actively support " the application to basic bio-
logical problems of the techniques, experimental procedures and methods 
of mathematics so effectively developed in the mathematical and physical 
sciences."** Indeed, the Natural Sciences section of the 1938 Annual Report 
(drafted by Weaver) began with a 16 page section headed Molecular Biology. 
This was at a time when most mathematicians thought of genetics in terms 
of Mendel 's laws, and 15 years before DNA and RNA revolutionized genetics. 

Continuum mechanics. During the half-century 1891-1941, our country 
was especially backward in continuum mechanics; almost all our leading ex-
perts were emigres from Europe. Thus even before 1900, the British-educated 
astronomer E . W. Brown was chosen to review Lamb's classic Hydrody-
namics.! And when the National Research Council sponsored a review of 
fluid mechanics in 1932, the bulk of the text was supplied by two other 
British-trained experts, F . D . Murnaghan (1893-1976) and H . B a t e m a n . i 

The situation was similar in solid mechanics: S. Timoshenko, a Russian 
emigre who went to Stanford, was our most influential figure; another was 
Ivan Sokolnikoff (1901-76), also a Russian emigre. Murnaghan tried to 

•See [25], vol. 37 (1964) 205-36 for Weaver's biographical sketch of Mason; Weaver has 
published his own reminiscences in [20]. 

••Quoted from a letter from Warren Weaver. 
tSee Bull. AMS 4 (1897) 73-89. Lamb was actually a Professor of Mathematics; his book 

went through six editions. 
• H. L. Dryden, F. D. Murnaghan, H. Bateman, Hydrodynamics, Bull. Nat. Res. Council, 

1932; Dover reprint, 1956. Dryden (1898-1965) was a Physics Ph.D., but contributed only 
28 pages out of 6251 
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construct workable mathematical models of nonlinear elastic solids which 
were consistent with Bridgman's high-pressure data ,* bu t none of these men 
attracted mathematical disciples of comparable stature. 

The contrast with Europe is striking;** Felix Klein's influence was again 
strong, and his protege L. Prandtl (1875-1953) developed a whole school 
in fluid mechanics. T . Levi-Civita (1873-1941), famous also for his work in 
differential geometry and on the three-body problem, was another notable 
European contributor to applied mathematics . Together with Th . von 
Kärmän (1881-1963), R. von Mises (1883-1953), G. I. Taylor, S. V. 
Southwell, D . M. Burgers, S. Goldstein, and many other European scien-
tists and engineers, these men organized a series of international con-
gresses in "theoretical and applied mechanics" from 1922 on at which 
Germans and Austrians were welcome, but whose Proceedings were largely 
ignored by American mathematicians. 

THE UNITED STATES ASSUMES LEADERSHIP 

18. John von Neumann. The mathematical ascendancy achieved by our 
country in the 1930's owes much to John von Neumann (1903-1957), one 
of the most scintillating minds of this century. Born into a well-to-do 
Budapest banking family, he was always brilliant, getting advanced 
degrees in both chemical engineering and mathematics in 1926. t By that 
t ime, he had already proposed new axiomatic foundations for set theory. 

During the years 1926-29, while a Privatdozent at the University of 
Berlin, he published 25 more papers , several of them fundamental . In 
particular, he developed his axiomatic foundations of set theory further, 
made an excursion into Hubert ' s proof theory, and showed that the 
existence of a non-trivial additive measure on Euclidean /i-space, invariant 
under the Euclidean group, depends on the solvability of that group. Even 
more important , he showed how to construct a spectral resolution for 
unbounded Hermitian operators on an abstractly defined Hilbert space, 
using new theoretical concepts going beyond those of F . Riesz. And finally, 
in a series of papers beginning with a joint 1927 paper with Hilbert and 
L. Nordheim, he showed that these concepts provided a natural and 
mathematically rigorous setting for the then new theory of quan tum 
mechanics. He was still only twenty-six! 

•Richter of "Richter scale" fame refers to Murnaghan's work in his Gibbs Lecture (Bull. 
AMS 49(1943)478-93). 

**Timoshenko has given in [18, Chs. X1II-XIV] a charming and informative account of the 
work of the leaders in solid mechanics; many of them also worked in fluid mechanics. 

tFor these and other facts and legends about von Neumann, see Paul Haimos, Amer. Math 
Monthly 80 (1973) 382-94; also 12J and [29J. 
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In 1930, he married and went to Princeton, which was to remain his 
home for the rest of his life. Two years later, his famous Grundlagen der 
Quantenmechanik presented his reformulation of quan tum mechanics 
in book form* and made so-called 'operator theory' fashionable overnight. 
This book has served as an inspiration and model for mathematicians 
interested in the foundations of quan tum mechanics ever since.** 

In the meantime, he had begun interacting with leading American math-
ematicians. Osgood's nephew B. O. Koopman had observed that any one-
parameter group of measure-preserving transformations (e.g., the flows in 
phase-space associated by Liouville's Theorem with dynamical systems) de-
fined a one-parameter unitary group to which Stone's theorem applied. This 
stimulated von Neumann to formulate and prove the Mean Ergodic Teorem. 
It was his discussion of this with G. D . Birkhoff that stimulated the latter 
to prove his sharper Pointwise Ergodic Theorem (see [6, vol. ii, pp . 462-5]). 
That same year, von Neumann also sharpened Stone's theorem on one-
parameter groups of linear isometries of Hilbert space; returning the com-
pliment, Stone's Linear Transformations in Hilbert space gave a more sys-
tematic and didactic t reatment of the whole subject. At 29, von Neumann 
had established himself as one of the world's leading younger math-
ematicians—but he still published in German, indicating his intention to 
return to Europe, possibly to Göttingen. 

The next year, Hitler seized control of Germany, the Institute for Advanced 
Study was founded in Princeton, and von Neumann became one of its first 
professors. He also became co-editor of the Annals of Mathematics; its 
founder Ormond Stone had died the year before, an associate editor until 
the end. The die was cast ; t von Neumann began publishing in English, 
and instantly became a leading American mathematician. 

It seems almost superfluous to touch on his outstanding research contri-
butions of the next eight years. Already in 1933, he solved Huber t ' s Fifth 
Problem for compact groups, by proving that any compact locally Euclidean 
topological group was topologically isomorphic to an analytic group (a Lie 
group). He then deepened his analysis of the structure of Operators ' (linear 
Hermitian operators on Hilbert space), founding in this connection a new 
theory of rings of operators (with F. J. Murray), and making major contri-
butions to lattice theory, then enjoying a renaissance. But above all, he was 

•English translation, Princeton Univ. Press, 1955. Gossip has it that Springer made von 
Neumann write his ideas up in book form, to pay for enormous charges for changes in page 
proofs of previous papers. 

••See George Mackey, "The Mathematical Foundations of Quantum Mechanics," Benjamin, 
1963. The author wishes to thank Professor Mackey for many helpful criticisms of an earlier 
draft of this paper. 

tVon Neumann's decision to emigrate from Europe is also discussed in [29, p . 68]. For a review 
of von Neumann's influence, see Bull. AMS, vol. 64. 
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interacting with American mathematicians of all ages, helping to set the 
mathematical style of the 1930's which I shall discuss next. 

By 1940, he was actively preparing himself for war research, and had al-
ready published his first paper with R. H. Kent (see §22, end) . This led to 
even more brilliant post-war activity, concerned with computing machines 
and numerical mathematics, but this is outside the scope of my talk. 

19. The early 1930's. In the early 1930's, the world was in the depths of 
the Great Depression. The job situation was so bad in our country tha t the 
MAA appointed a Commission in the summer of 1933, with E . J. Moulton 
as Chairman, on the Training and Utilization of Advanced Students in 
Mathematics. It was found that "of 3488 mathematics teachers in the colleges 
of the U.S . and Canada, only 937 held doctorates ."* Of these probably less 
than 150 were active in research. Nevertheless, many Ph .D . ' s were unable 
to get jobs in colleges, and (like Maschke in Germany 60 years earlier) had 
to accept high-school positions; even getting these was not easy. 

Institute for Advanced Study. A new bright spot in these gloomy years 
was provided by the Institute for Advanced Study in Princeton, endowed 
by the generosity of Felix Bamberger, a phenomenally successful Newark 
department store owner. Though it did not alleviate the unemployment 
problem, it was designed to provide ideal conditions in which outstanding 
scholars could work and radiate their wisdom. Its design followed specifi-
cations outlined by Abraham Flexner (1866-1959) in his influential book 
Universities: American, British, German. 

It began with a School of Mathematics , whose early members included 
Veblen, von Neumann, Morse, and Einstein and Weyl from Europe. During 
the 1930's, it both enabled many young Americans to do research in a 
stimulating environment, free from teaching duties, and (later, see §21) 
provided a haven for scholars fleeing Nazi-dominated portions of Europe. 

Society of Fellows. A second bright spot was Harvard 's Society of Fellows 
(see §12), founded on very different principles. It was designed to free out-
standing young men to do research, explicitly emancipating its members 
from P h . D . requirements. Membership in this played an important role in 
the careers of R. C. Buck, Gleason, Loomis, Mazur, Minsky, Mumford, 
Oxtoby, Quine, Ulam, and G. Birkhoff—not to mention three Nobel Prize 
winners (Bardeen, Samuelson, Woodward), one a double winner. Lowell's 
idea has since been copied at other universities. 

Veblen and G. D . Birkhoff still headed our Mathematical Establishment, 

•Amer. Math. Monthly 42 (1934) 143-4. Over half of these were from Chicago, Cornell, 
Harvard, Illinois, Johns Hopkins, or Yale. 
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in friendly cooperation with Bliss, Dickson, R. G. D . Richardson, and 
many others. However, G. D . Birkhoff was to serve as Dean of the Faculty 
at Harvard for four years, 1934-38, while Veblen was to become the guiding 
force of the School Mathematics at the Institute for Advanced Study.* In 
spite of these administrative distractions, which greatly reduced their t ime 
for creative mathematical thought, they both attended AMS meetings reg-
ularly and continued to think of mathematical research as their highest ac-
tivity. 

In the eyes of the mathematical community at large, Analysis still appeared 
to reign supreme. Thus the first two Fields Medals were awarded (in 1936) 
to two analysts: Ahlfors for his work on the geometry of Riemann surfaces, 
and Douglas for his solution of the Plateau problem, in competition with 
Courant and Tibor Rado. Douglas was at Columbia, and Ahlfors at Harvard 
at the time; hence these awards enhanced America's mathematical prestige. 

20. New trends of the 1930's. However, Analysis in the traditional sense 
was no longer the central concern of the most active younger American 
mathematicians of the 1930's. Although we acknowledged the preeminence 
of such older analysts as G. D . Birkhoff and Hermann Weyl, young men 
like A. A. Albert, Nelson Dunford, Nathan Jacobson, Saunders Mac Lane, 
Deane Montgomery, Barkley Rosser, Norman Steenrod, John Tukey, and 
myself tended to regard logic, abstract algebra, topology, and functional 
analysis as more promising areas for important future discoveries, t Perhaps 
this was partly because we felt we could not compete successfully with the 
masters on their own territory. 

As a result, we concentrated our attention on the current research of men 
like von Neumann, Stone, Pontrjagin, and Whitney. When Artin and Che-
valley joined Wedderburn at Princeton, this t rend accelerated. We found ex-
citement in the dramatic discoveries of Gödel in logic, in the sweeping gener-
alizations made by Emmy Noether and her school in algebra, and in the 
work of filie Cartan and O. Schreier on topological groups. These opened 
new vistas extending far beyond the structure theorems for associative and 
Lie algebras that had been obtained by Cartan and Wedderburn 30 years 
earlier. Inspired by the recent successes of von Neumann, Stone, Schauder, 
and Leray, we also hoped that the new theories of linear operators on Hilbert 
and Banach spaces would lead to enormous generalizations and simpli-
fications of the classical theories of differential equations. Indeed, our hopes 

•For the record, it should be stated that G. D. Birkhoff was invited to join the IAS at a salary 
of $20,000 (equivalent after taxes to over $80,000 today), but declined to leave Harvard. 
Institute salaries were then set at $15,000. (Harvard's range for full professors was $9,000-
$12,000, truly luxurious during the Great Depression.) 

t E . J. McShane, Norman Levinson, C. B. Morrey, and other young analysts naturally did not 
share this view. 
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were to be in some measure fulfilled, although it was to be the Bourbaki school 
in France that would give them their most definitive expression. 

Above all, we hoped to be free to pursue our researches into fundamental 
questions of pure mathematics suggested by these new ideas and techniques, 
and to become famous by discovering still other basic new ideas and tech-
niques, undisturbed by the political storms which had already driven so 
many European colleagues to our shores in search of asylum. 

I think that the preceding remarks correctly reflect the mood of our 
country's leading younger mathematicians during the years preceding 
Munich. As the semicentennial anniversary of the founding of the AMS 
approached, most American mathematicians were justifiably proud of the 
progress and momentum achieved during the preceding fifty years. This 
mood of patriotic pride is very evident if one reads the two volumes 
published to commemorate this anniversary ([1], [2]). The younger speakers 
chosen include McShane (best student of Bliss), Τ. Y. Thomas (best student 
of Veblen's differential geometry phase), and R. L. Wilder (best student of 
R. L. Moore). The other technical lectures were by Evans, Ritt, Wiener, and 
Synge—Synge presumably being chosen to represent both the British tra-
dition in applied mathematicst and Canadian participation in the AMS. 

G. D . Birkhoff s lecture [5] on "Fifty Years of American Mathemat ics" 
gives perhaps the most authentic technical account of progress in American 
mathematics during this period, especially when read in conjunction with 
Morse's account of G. D . Birkhoff and his work in [6, vol. i, p p . xxii-lvii] t . 
To round out the picture, one should consult the scientific biographies of 
17 leading American mathematicians "in their thir t ies" published by Scripta 
Mathematica in vol. 4, p p . 87-93 , 188-95, 283-9, and 330-4 .* 

In this connection, as a final example of a "leader in American math-
ematics" during the period under discussion, I want to cite Hassler Whitney, 
who exemplified our desire for new ideas and new problems.** 

Hassler Whitney. Simon Newcomb's grandson Hassler Whitney (1907-) 
was the most independent and self-motivated of G. D . Birkhoff s post-1930 
students. I well remember G. D. Birkhoff s annoyance when Whitney's first 
minor thesis, a piece of expository writing required of all Harvard P h . D . 
candidates, was turned down by the Harvard Mathematics Depar tment (with 
Osgood as chief critic) for not being a careful enough exposition! 

Whitney's doctoral thesis was on the four color problem, for which he 

t l hasten to add that, like Hamilton (and Murnaghan), Synge is Irish. 
• Reprinted from Bull. AMS 52 (1946) 356-91. 
*Of the 13 "native sons," 10 were Ph.D's of G. D. Birkhoff, Bliss, Dickson, Veblen, or 

R. L. Moore—hence in the Ε. H. Moore family group. 
**One could also mention A. A. Albert (1905-72); see N. Jacobson, Bull. AMS 80 (1974) 

1075-1100, and D. Zelinsky, Amer. Math. Monthly 80 (1973) 661-5. 
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found an equivalent graph-theoretic formulation. In tu rn , this led him to 
formulate an abstract theory of linear dependence which inspired, much 
later, a great deal of combinatorial research. 

But his most important contribution was to the formulation of the new 
algebraic concepts underlying the algebraic topology that was beginning to 
take shape during those years. He was a major contributor to the recognition 
and formulation of such notions as 'fiber bundle ' , 'sphere bundle ' , 'cocyle', 
'coboundary' , 'differentiable manifold', and 'tensor product ' . In a few years, 
he would become distracted by war work, but it was to no small extent 
Whitney's prewar ideas that were to make topology progress in new direc-
tions after 1940. 

Lefschetz and Tamarkin. The new approaches to topology (to which 
Steenrod and Tükey were contributing actively) are expounded in Lefschetz' 
Algebraic Topology (1942), t and it is typical of the revolutionary spirit of 
the times that Lefschetz' personal decision to rename "combinatorial 
topology" "algebraic topology" was accepted virtually without dissent. 
(Today, combinatorics is staging a vigorous comeback!) 

It is also noteworthy that J. D . Tamarkin helped read the proofs of this 
influential book. Though an analyst, Tamarkin ' s personal support and stim-
ulus were felt in every phase of the American mathematical effort. To take 
one example, he personally translated Ado's fundamental paper on Lie 
algebras for my benefit! 

21. Europe in torment: 1914-41. There is no doubt but that our nation 
became the world's leading mathematical country during the 1930's, if not 
before. However, this status owed much to our political and economic 
stability, as contrasted with European instability. 

I have already mentioned (in §8) the tragic impact of World War I on 
European mathematics. The loss of life was probably felt most deeply in 
France and Great Britain, which had relatively low birth rates; but post-
war upheavals continued to distract Russia and Germany; while the old 
Austro-Hungarian empire was Balkanized into small fragments. Only Hol-
land, Switzerland, and Scandinavia emerged unscathed, although Polish 
independence stimulated a remarkable resurgence of mathematics there: 
overnight, Poland became the world center of point-set topology (set theory). 

Our country (like Western Europe) was enriched by the resulting flow of 
Russian refugees: J. D . Tamarkin , J. Shohat, Sokolnikoff, Timoshenko, 
Uspensky, Zariski, and others added substantially to our mathematical re-
sources. In return, we tried to help in reconstructing Western Europe; the 
establishment of the Institut Henri Poincare in Paris and of a new Mathe-

tSee the Preface, which mentions Whitney four times. 
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matical Institute in Göttingen, both financed by the Rockefeller Founda-
tion (see §14), being notable instances. 

It was not until the 1928 Congress at Bologna that nationals from the 
defeated countries of Germany, Austria, Hungary, and Bulgaria were al-
lowed to participate in an international mathematical congress, after a 
lapse of 16 years! Mussolini had stabilized Italy politically six years before . t 
and nobody had yet challenged the League of Nations. 

Indeed, at the 1928 and 1932 International Mathematical Congresses 
(the latter at Zurich), one had the impression of a still dominant Europe; 
see the at tendance statistics below: 

1928 1932 1936 

England 47 37 48 
France 56 69 28 
Germany 76 118 35 

Italy 336 64 5 
Russia 37 10 11 

U.S. 52 66 86 

Poland 31 20 25 

Scandinavia 21 20 101 
Low Countries 19 23 24 
Austria & Hungary 31 22 15 

Czechoslovakia, 
Yugoslavia, Rumania 30 23 21 

836 667 487 

However, there were deep-seated resentments associated with economic 
dissatisfaction. In France, bus-loads of American tourists were stoned in 
the mid-1920's; in England, laborites were angry at Old school tie' favoritism 
and economic privilege. Finally, Hitler capitalized on bitterness over the 
Treaty of Versailles and the post-war inflation to seize power in Germany 
by a classic coup d'etat in March 1933. Making communists and wealthy 
Jews his first targets, he started a campaign of pan-German expansion. 

At the time, owing to the emigration of a small number of outstanding 
mathematicians such as Hille, Ore, E. Hopf, Τ. Rado, D . J. Struik, A. 
Wintner, and especially von Neumann, our country had already begun to 
achieve a mathematical strength commensurate with its population and 
resources. But after 1933 there came to our shores a veritable flood of new 
refugees from Germany and neighboring countries menaced by Hitler. As a 
result, whereas Göttingen was still acknowledged to be the world's greatest 

tlncidentally, Italian hydroelectric power had doubled during those years, from 3.65 χ 106 

Mwh to 7.8 χ 106 Mwh annually. See the first paper in the Congress Proceedings*. 
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mathematical center by most mathematicians (especially those at Göttin-
gen!) in 1928, it was a shambles by 1936. The Zentralblatt für Mathe-
matik, Springer's progressive rival to the hoary Jahrbuch der Fortschritte 
der Mathematik, was being run from Copenhagen by Neugebauer, and our 
country had become the symbol of hope for the future. Although the 1936 
International Mathematical Congress in Oslo took no official notice of 
these unpleasant facts, it was not surprising that an invitation to hold the 
1940 International Mathematical Congress in Cambridge, U.S.A. , with G. 
D . Birkhoff as President, was accepted with thanks . Or that G. H. Hardy 
should have stated in his after-banquet speech at the 1936 AMS Summer 
meeting in Cambridge, that the United States had become the world's 
leading mathematical country. 

Storm clouds were visible all around, but almost everyone still hoped in 
1938, at the t ime of the Munich agreement, tha t World W a r II could be 
avoided. 

22. Twilight of an era . The semicentennial anniversary of the AMS was 
celebrated weeks after Munich. During the years 1938-41, events came 
thick and fast. In particular, "American" mathematics lost its indigenous 
character. 

Even before 1938, the migration of eminent European mathematicians 
to our shores had become a deluge. Some of the names that spring to mind 
are: Artin, R. Brauer, Ε. Noether, Schilling; Courant, Friedrichs, Lewy; 
Bochner, Pölya, Szegö, Rademacher, Schoenberg, Weinstein; Eilenberg, 
Hurewicz, Kac, Ulam; Wigner, Menger; Chevalley, Andre Weil.** 

Another important acquisition was O. Neugebauer, the distinguished 
historian of mathematics, who transplanted the Zentralblatt für Mathematik, 
by a painless mutation, into an English language Mathematical Reviews 
published by the AMS. The AMS headquarters followed Neugebauer to 
Providence a decade later. 

Hermann Weyl. Of all the mathematicians who emigrated to the United 
States in the 1930's, Hermann Weyl (1885-1955) was the most eminent. 
The successor of Hilbert and Felix Klein at Göttingen, his move to the 
Institute for Advanced Study in 1933 had a symbolic as well as a real 
significance. 

Weyl was a contemporary of G. D . Birkhoff, and their early research 
was similar. Thus both were deeply interested in expansions in eigenfunc-
tions, and more broadly in the differential equations of mathematical 
physics, using integral equations as a too l . t However, whereas G. D . 

**For a more complete list, see A. Dresden, Amer. Math. Monthly, 49 (1942) 415-29. 
tSee H. Weyl, Bull AMS 56 (1950) 115-39; for Weyl's own hindsight on the half-century 

1900-1950. see Amer. Math. Monthly 58 (1951) 523-33. For a personal appraisal of Weyl 
and some of his work, see C. Chevalley and A. Weil, Ens. Math. 3 (1957), reproduced in 
[18, vol. iv, pp. 655-85). 
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Birkhoff concentrated on ordinary differential equations and dynamical 
systems having a finite number of degrees of freedom, Weyl branched out 
early into partial differential equations and complex analysis. 

One of Weyl's spectacular early results was his proof that all Dirichlet-
type problems had the same asymptotic distribution of eigenvalues λ,·, 
the number of λ,· < Λ being asymptotically proportional to A-vol (/?)· 
Another early influential contribution to the philosophy of Riemann 
surfaces was his monograph Das Idee der Riemannsche Fläche, enthusias-
tically dedicated to Felix Klein. This contained an early rigorous formula-
tion of the 'great and divine' ("gross und gottlich") concept of a Riemann 
surface, and expounded Koebe s uniformization theorem with the global 
rigor of L. E . J. Brouwer. 

During the tragic years of World War I, Weyl wrote his influential 
Raum, Zeit, Materie, a book whose English t rans la t ion! (after four 
German editions) helped greatly to clarify the mathematical meaning of 
Einstein's special and general theories of relativity. In the preface, Weyl 
mentions its "intermingling of philosophical, mathematical , and physical 
thought , a study which is dear to my hear t . " Weyl's philosophical bent 
was even more forcefully expressed in his attacks on Hubert ' s "formalist" 
approach to mathematics in the early 1920's; Weyl advocated the 
"intuitionist" approach of Brouwer. 

But most important were his contributions to group representation 
theory in the mid-1920's. Where earlier authors had only determined the 
representations of finite groups, Weyl determined those of the orthogonal 
and unitary Lie groups of greatest importance for quan tum mechanics, 
and those of the symplectic group as well. In 1927, he and Peter proved 
that any compact Lie group can be directly decomposed into finite-
dimensional irreducible representations, paving the way for von Neumann 's 
1935 proof that any compact locally Euclidean continuous group was 
analytic. When he came to our country, he brought with him a substantial 
piece of European scientific tradit ion, and from him flowed wisdom and 
creative contributions to many aspects of mathematics until his retirement. 

During these fast-moving years 1938-41, two parallel currents flowed 
swiftly side by side. On the one hand, a score or more of able young 
American mathematicians such as myself strove to make the most of 
their birthright of freedom and opportunity. For example, it was in these 
years that I wrote the first edition of "Lattice Theory," and tha t Mac Lane 
and I wrote the first edition of our "Survey of Modern Algebra." 

There was at the same time also a strong current of European mathe-
matical tradition, trying to adapt itself to a New World in which professors 
were supposed to be teachers first and publishers of sophisticated research 
second. The Institute for Advanced Study was a staging ground for many 
of our distinguished new immigrants; G. D . Birkhoff has discussed some 

•^Space-Time-Matter (translated by H. L. Brose) Dutton, 1920. 
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problems involved in absorbing them in [5, p p . 278-9] . Jobs in stimulating 
research environments were still very scarce; he feared that if these went 
to European emigres, however distinguished, young American mathema-
ticians would become mere "hewers of wood and drawers of water"— 
Veblen's priorities were the reverse, but solutions were worked out gradu-
ally and amicably. 

Courant . Another famous refugee from Göttingen was Richard Courant 
(1888-1972). Like Weyl, he had begun his research before World War I 
on Hilbert 's 'direct ' variational methods.* His Methoden der Mathema-
tischen Physik, nominally co-authored by Hilbert, was a sensational success 
among physicists. He came to N.Y.U. from Germany in the middle 1930's, 
accompanied by two outstanding young compatriots: K. Friedrichs and 
H. Lewy. Within a decade, Courant had expanded this nucleus into a 
very large and prosperous research group, specializing in partial differential 
equations and their application. 

Applied mathematics. If pure mathematics was enriched by our new-
comers, in applied mathematics they filled a vacuum. Thus the move of 
von Kärmän to the Guggenheim Aeronautical Laboratory at Caltech 
around 1930 initiated the training of a whole generation of aerodynamic 
experts, many of whom played leading roles in our World War II effort 
and our post-war aviation and aerospace industries. Some of von Kärmän ' s 
skill in applying mathematics can be glimpsed by reading his Gibbs 
Lecture, t 

More profound mathematically were von Mises and his associates: 
S. Bergman, H. Geiringer, and W. Prager. Together with von Kärman , 
they imported the sophistication in continuum mechanics that had been 
lacking in our country up to that t ime. After the war, von Mises and 
von Kärmän founded the series Advances in Applied Mechanics, while 
Menger 's collaborater F . Alt founded Advances in Computers. 

Another distinguished acquisition was M. Jakob, the world's leading 
scholar in the area of heat transfer. 

After the fall of France in 1940, the urgency of the situation became 
apparent to all. This made our few native applied mathematicians heroes 
overnight. T. C. Fry was invited to write an article [11] in the Monthly, 
in which he described the qualities and training that a mathematician in 
industry must have to be effective, stating that "There is nowhere in 
America a school where this training can be acquired." R. G. D . Richard-

•Math. Annalen 71 (1911) 145-88 and 72 (1912) 517-50, where it is stated that Hilbert's 
famous vindication of the Dirichlet principle (direct variational methods) was only sketched. 
Concerning Courant, see [30]. 

f 'The engineer grapples with nonlinear problems," Bull. AMS 46 (1940) 615-83. 
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son put Fry's ideas into practice a year later, by establishing at Brown a 
new center where applied mathematics would be taught at the Ph .D . level 
(cf. Scripta Math . 8 (1941) 57-9) . 

R. H . Kent. The dawn and the twilight of the era 1891-1941 are linked 
together by the career of R. H. Kent, Chief Scientist of the Ballistic 
Research Laboratories at the Aberdeen Proving Ground from around 1920 
to 1955. He was among those who learned mathematics and physics from 
B. O. Peirce, who had been a key figure at Harvard from 1884 on 
(see §4). Unfortunately for h im, but fortunately for our country (see below), 
Kent failed to get a P h . D . , largely because Harvard required all doctoral 
candidates in physics to write an experimental thesis before World War I. 

Therefore, after inspecting ammunition dumps with J. W. Alexander 
at the end of that war, he had to take a civil service job at Aberdeen. 
There he played an inconspicuous but crucial role in maintaining the 
high technical level established by Veblen and F . R. Moulton, in whose 
office he served 1917-19 (see [12, Part 1, Ch. 9, and Part 2, Ch. 2]). His 
wisdom and skill in the scientific solution of ordnance problems were 
material factors in our World War II victory. He also tutored von 
N e u m a n n , t who had been made a consultant at Aberdeen in 1937, and 
many other scientists. For his contributions to the war effort, he was elected 
to the National Academy. 

23 . Epilogue. The Japanese attack on Pearl Harbor in December, 1941, 
marked the end of an era. Overnight, the leaders in every phase of 
American life recognized that there was a national emergency, and that 
all other objectives had to be subordinated to the defense of our country 
and institutions. 

In a sense, then, my story ends here. But the careers of the leaders 
I have been describing did not terminate; all tha t happened was that the 
advancement of American (pure) mathematics ceased to provide a central 
focus, and from 1942 on their careers diverged. Let me therefore 
conclude by briefly recalling how a few of the men whose achievements I 
have been trying to honor rounded out their careers after 1941. 

G. D . Birkhoff, besides continuing his normal duties, toured South 
America and Mexico as a good-will ambassador representing our scientific 
culture. It was at the dedication of a new astrophysical observatory in 
Tonantzintla in Mexico that he announced his relativistic theory of grav-
itation in flat space-time. He also studied with me the entry into water 

tThey were the authors of two joint papers in 1940-41 (##77-78 of 115, p. 532j; see also 
##80, 82, 83, 86, and 148). For a sample of Kent's mastery, see Amer. Math. Monthly 48 
(194,1) 8-14; for Aberdeen's role in World War II, see [12, Part 2, Ch. 6J. 
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of air-launched torpedoes; this study led ultimately to my book Jets, Wakes 
and Cavities (1937), whose co-author E. Zarantonello had met G. D. 
Birkhoff during the latter 's wartime visit to Buenos Aires. 

Whereas G. D. Birkhoff died in 1944, Veblen lived on for many years. 
In particular, Veblen took G. D. Birkhoffs place as President of the 
1950 International Mathematical Congress in Cambridge, on whose Orga-
nizing Committee I had replaced D . V. Widder as Chairman. During the 
war, Veblen's counsel was also widely sought and freely given, partly be-
cause of his familiarity with military science dating from World War I. His will 
provided for an 80 acre arboretum near Princeton, symbolic of the outdoor 
life he so dearly loved. 

Although men like Veblen gave counsel, American academic mathema-
ticians as such were not at first called on to contribute to our war effort, 
perhaps because of their long neglect of applied mathematics . Indeed, 
Conant and Bush omitted mathematicians entirely from their original 
National Defense Research Council plans. However, by late 1942, Warren 
Weaver had obtained authorization for a mathematical analysis of the most 
effective setting for proximity fuzes in anti-aircraft shells, in spite of some 
opposition from Merle Tuve, their inventor. The committee making this 
analysis included Morse, von Neumann, Η. H. Germond, and myself; 
I will never forget our initial 90 minute briefing by Weaver, which gave me 
my first mature insight into what applied mathematics was all about! 

Morse, who had just served as AMS President, and was chairman of its 
War Preparedness Committee, continued throughout the war to make 
similar analyses of the optimal settings for proximity fuses in high explosive 
shells being fired at enemy ground troops, receiving a Meritorious Service 
Award from our army for this work and for his analysis of 'skip bombing. ' 

Von Neumann was active and brilliant both at Aberdeen and Los 
Alamos, where he worked with such later emigres from Europe as Bethe, 
Fermi, and Teller, on the design of our first atomic bomb (see 129]). 
He early recognized the potentialities of general purpose digital computers, 
and his contributions to their design during the decade 1943-53 may well 
rank as his most important work (see [12]). 

Wiener gained great prominence during the war through his imaginative 
ideas about cybernetics, of which one aspect was his stochastic prediction 
theory. Although his ideas stimulated the establishment of several research 
institutes and journals devoted to cybernetics, their technical impact on 
science has been limited so far. 

After the war, Stone revamped the Mathematics Department at Chicago 
and became an international lecturer par excellence. His lecturing posts 
included Brazil, India, Japan, Turkey, and CERN in Geneva. He was 
president of the International Mathematical Union in 1952-4, and con-
cluded his teaching career as George David Birkhoff Research Professor 
at the University of Massachusetts. 



Some Leaders in American Mathematics: 1891-1941 77 

Walsh, faithful through the decades to the ideals and Weierstrassian 
analysis that had dominated Harvard mathematics when he entered 
Harvard as a sophomore around 1913, was rewarded by seeing approxima-
tion theory again become fashionable in the late 1960's, and by having 
the 'Walsh functions' which he had invented in the early 1920's admired 
by electrical engineers. Over 200 mathematicians came to a Symposium 
honoring his 75th birthday in 1970.J Walsh died a few years later, leaving 
over $200,000 for graduate scholarships in mathematics at Harvard. 

I hope these brief concluding vignettes will give you some sense of how 
our once closely knit and patriotic mathematical community became 
internationalized, diversified, and even fragmented in the post-war years. 
To me, the most striking (and most poignant) mark of this change was 
the choice in 1950 of those two formidable Bourbaki exponents, Jean 
Dieudonne and Andre Weil, to write keynote articles in the Monthly about 
the nature of mathematics.** 

If you will read these articles, then compare (or contrast!) them with 
those in the AMS Semicentennial Publications of 1938, and finally read 
Felix Klein's 1893 Evanston Colloquium Lectures and those by others at 
the 1893 Congress, you will get some sense of the extent to which the 
leaders I have described had achieved by 1938 their mission of matching 
Europe's mathematical culture, that their success had become an 'overkill' 
by 1941, and that it was taken for granted in a very changed world by 
1950. 

Today, American mathematicians are faced with different problems, 
at least as difficult as those which faced Ε. H. Moore, Osgood, 
Bocher, Fine, Dickson, Bliss, Veblen, and G. D. Birkhoff in the 1890's 
and 1900's. Will they solve them as successfully? This is the challenge 
of the future! 
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AMERICAN MATHEMATICS FROM 1940 TO THE 
DAY BEFORE YESTERDAY* 

J. H. Ewing, W. H. Gustafson, P. R. Haimos, 
S. H. Moolgavkar, W. H. Wheeler, and W. P. Ziemer 

1. Preface. What is the best way to present the small fragment of history 
described by the title above? Should this report occupy itself mainly with 
the statistics of the growth of Mathematical Reviews?, with the lives of 
mathematicians?, with lists of books and papers?, or with retracing the 
influences and implications that led from the bridges of Königsberg first to 
analysis situs and then to homological algebra? We decided to do none of 
these things, but , instead, to tell as much as possible about mathematics , 
the live mathematics of today. To do so within prescribed boundaries of 
time and space, we present the subject in the traditional "batt les and 
kings" style of history. We try to describe some major victories of Ameri-
can mathematics since 1940, and mention the names of the winners, with, 
we hope, enough explanation (but just) to show who the enemy was. The 
descriptions usually get as far as statements only. We omit all proofs, but 
we sometimes give a brief sketch of how a proof might go. A sketch can be 
one sentence, or two or three paragraphs; its purpose is more to illuminate 
than to convince. 

Progress in mathematics means the discovery of new concepts, new 
examples, new methods, or new facts. Schwartz's concept of distribution, 
Milnor's example of an exotic sphere, Cohen's method of forcing, and the 
Feit-Thompson theorem about simple groups are surely major by any stan-
dards . It was no trouble to find such victories to include in our list; the 
difficulty was to decide what to exclude. We formulated some rough rules 

•The authors are grateful to W. Ambrose, G. Bennett, J. L. Doob, L. K. Durst, I. Kaplansky, 
R. Narashimhan, I. Reiner, and F. Treves for help, including advice, references, and, espe-
cially, encouragement. 

This paper first appeared in the American Mathematical Monthly, 83 (1976) 503-516. 
Its preparation was supported in part by a grant from the National Science Foundation. 
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(e.g., theorems, not theories); since at least some aspects of applied mathe-
matics were covered by other presentations, we restricted our attention to 
pure mathematics; we excluded work that had neither root, nor branch, 
nor flower in the U.S . ; and, in deciding which of two candidates to keep, 
we leaned toward the one of greater general interest. ("Of general interest" 
is not quite the same as " famous" , but it's close.) 

We ended up with ten "batt les and kings" , and we think that they draw 
a fair picture of what 's been happening. We do not say that our ten are 
greater than any others, nor that they are necessarily maximal in the mathe-
matical sense of not being lesser than any others. We do say that they would 
all appear, and would be discussed with respect, in any responsible history 
of our place and time. The total number of such "non-omit table" victories 
is certainly greater than ten; it may be twenty or even forty. The choice of 
our ten was influenced by the limits of our competence and by our personal 
preferences; that could not be helped. Anyone else would very likely have 
selected a different set of ten. We hope and think, however, that everyone's 
list would have a large overlap with ours, and that the local differences 
would not essentially alter the global picture. 

In history, every moment influences its successors; to restrict attention to a 
time interval may be often necessary, and sometimes possible, but it is rarely 
natural . In the same way, every place influences all others. Since the topology of 
the surface of our globe is much more intricate than that of the t ime line, to re-
strict attention to one country is almost impossible. The history of mathematics 
is no exception: trying to describe what happened here, we frequently yield 
to the pressure of distant influences and discuss what happened there. We 
were able to stay reasonably close to our original charge just the same; if 
fractional credits are assigned, something like 8.25 of the ten accomplish-
ments described below can be called American. It might be of interest to 
observe also that over half of the original papers we refer to appeared in 
the Annals of Mathematics. 

The order of the presentations might have been based on any of several 
principles (e.g., what actually happened first?, what is a prerequisite for 
what?). We decided to arrange them in order of complexity of the under-
lying category, or, in other words, very roughly speaking, in order of dis-
tance from the foundations of mathematics. At the end of each section there 
is a small list of pertinent references. The list is intentionally incomplete. 
All it contains is one (or, if necessary, two or three) of the earliest papers in 
which the discovery appears, and a more recent exposition of the discovery 
whenever we could find one. 

2. Continuum Hypothesis. All mathematics is derived from set theory 
(or, in any event, many of us believe it is) and the manipulation of sets is a 
simple, natural exercise (or, in any event, students have very little trouble 
catching on to it). Everything that any working mathematician ever needs 
to know about sets (and a few extra things that he never thought he needed 
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to know) could be summarized on one printed page (or three or four printed 
pages, if motivation is wanted along with the formalism). Such a page would 
state the basic ways of making new sets out of old (e.g., the formation of 
sets consisting of specified elements, the formation of unions of sets of sets, 
and the formation of the power set, i .e. , the set of all subsets, of a set); it 
would describe the basic properties of sets (e.g., that two sets are equal if 
and only if each is a subset of the other, and that no set has elements that 
are themselves sets that have elements continued on downwards ad infinitum); 
and it would state (as an assumption or as a conclusion, but in either case as 
a description of the universe that sets live in) that infinite sets exist. These 
basic set-theoretic statements might be regarded either as obvious factual 
observations or as an axiomatic description of the ZF (Zermelo-Fraenkel) 
structure. In either case it would be a simple matter to code them in the 
language of a suitable (not very complicated) computer. Such a machine 
could easily be taught all the rules of inference that mathematicians ever 
use. If, in addition, its basic data were increased by two more statements, 
it could, in principle, easily print out all known mathematics (and a lot 
that is not yet known). 

The two statements that history has subjected to extra scrutiny are AC 
(the axiom of choice) and GCH (the generalized continuum hypothesis). 
AC says that , for each set X, there is a function / from the power set of X 
into X itself such that f(A) G A for each non-empty subset A of X; GCH says 
that each subset of the power set of an infinite set X is in one-to-one cor-
respondence either with some subset of X or with the entire power set — 
there is nothing in between. 

Is AC true? The question has often been likened to a similar one about 
Euclid's parallel postulate. In both cases there is a more or less pleasant 
axiom system and a less pleasant, more complicated, non-obvious addi-
tional axiom. If the extra axiom is a consequence of the basic ones, it is 
t rue, and all is well; if its negation is a consequence of the basic ones, it 
is false, and, for better or for worse, the question is definitively answered. 
The same question can, of course, be asked about GCH. It has long been 
known that GCH implies AC; in view of this there is an obvious connection 
between the two answers. 

The answers are subtle and profound intellectual achievements. Gödel 
proved (1940) that AC and GCH are not false (i.e., tha t they are consistent 
with the axioms of ZF), and Paul Cohen proved (1964) that they are not 
true (i.e., that they are independent of ZF). 

Gödel argued by the construction of a suitable model. If, he said, ZF is 
consistent, so that there is a universe V" of sets satisfying the basic axioms 
of ZF , then, he proved, there is a "sub-universe" that also satisfies them, 
and in which, moreover, both AC and GCH are t rue. The sub-universe 
Gödel constructed was the class £ of "constructible" sets. (The word is given 
a very liberal but completely precise meaning; roughly speaking, the con-
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structible sets are the ones that can be obtained from the empty set by a 
transfinite sequence of elementary set-theoretic constructions.) The class L 
is a substructure of V in the familiar mathematical sense of that word: the 
objects of L are some of the objects of V, and the relation G among them is 
the restriction of the set-theoretic € in V to the objects of L. The existence 
of a model such as L (constructed out of a hypothetically consistent model 
V) proves the consistency of AC and GCH the same way as the existence of 
the Euclidean plane proves the consistency of the parallel postulate. 

Cohen's argument was similar but harder . It is reminiscent of Felix Klein's 
construction of a Lobachevskian plane by endowing a Euclidean disk with 
a new metric. Cohen started with a suitable model of ZF and adjoined new 
objects to it. The new objects are "classes" (but not sets) in the old model. 
The adjunctions proceed by a new method called "forcing", which, once it 
was discovered, was found to be applicable in many parts of set theory. 
Cohen's proof constructs an infinite sequence of better and better finite 
approximations to the new objects. Roughly speaking, each property of the 
new model is "forced" by properties of the old model and one of the ap-
proximations. Depending on how the details are adjusted, the end result 
can be a model of ZF in which AC is false, or a model of ZF in which AC 
is true but even the classical un-generalized continuum hypothesis CH is 
false. (CH is GCH for a countably infinite set.) Conclusion: AC and CH 
are independent of ZF. 

References 

1. P. J. Cohen, The independence of the continuum hypothesis, Proc. N. A. S., 50 (1963) 
1143-1148 and 51 (1964) 105-110. 

2. , Set theory and the continuum hypothesis, Benjamin, New York, 1966 
"(MR 38#999). 

3. J. B. Rosser, Simplified independence proofs, Academic Press, New York, 1969 
(MR 40*2536). 

4. T. J. Jech, Lectures in set theory, with particular emphasis on the method of forcing, 
Springer, Berlin, 1971 (MR 48#105). 

3. Diophantine Equat ions . The continuum hypothesis was the subject of 
Hilbert 's first problem (in the famous list of 23 problems that he proposed 
in 1900); Hilbert 's tenth problem concerned the solvability of Diophantine 
equations. The problem was to design an algorithm, a computational pro-
cedure, for determining whether an arbitrarily prescribed polynomial 
equation with integer coefficients has integer solutions. It is in some respects 
more natural and sometimes technically easier to discuss the positive integer 
solutions (solutions in Z + ) of polynomial equations with positive integer co-
efficients. Caution: tha t does not mean equations such as p(x) = 0 only. 
The problem includes the search for x ' s such that p(x) = q(x); more gen-
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erally, it includes the search for w-tuples (xx, . . . , x„) such t h a t p ( x x , ..., 
x„) = q(xx, . . . , x„); and, in complete generality, it means the search for 
w-tuples (x , x„) for which there exist m-tuples (y,,..., ym) such tha t 

p(xx, . . . , x n , y l , ...,ym) = q{xx, ...,x„,yx, ...,ym). 

For each ρ and q (in η + m variables) the solution set, in the latter sense, 
is called a "Diophantine set" mZ.'l. 

What does it mean to say that there is an algorithm for deciding solva-
bility? A reasonable way to answer the question is to offer a definition of 
computability for sets and functions, and then to define an algorithm in 
terms of computability. 

When does a function from Έ+ to or, more generally, a function 
from Έ" to deserve to be called "computable"? There is general agree-
ment on the definition nowadays: computable functions (also called "recur-
sive" functions) are the ones obtained from certain easy functions (constant, 
successor, coordinate) by three procedures (composition, minimalization, 
primitive recursion). The details do not matter here (they won't be used 
anyway); it might be comforting to know, however, tha t they are not at all 
difficult. A set (in Z + , or, more generally, in Έ'ί) will be called computable 
in case its characteristic function is computable. Consequence: a set (in Έ.Ί) 
is computable if and only if its complement is computable. 

Consider now all polynomial equations (in the sense described above), 
and let {Ex, E2, E3, . . . } be an enumeration of them. (In order for what 
follows to be in accord with the intuitive concept of an algorithm, the 
enumeration should be "effective" in some sense. That can be done, and it 
is relatively easy.) The indices k for which Ek has a solution (in the sense 
described above) form a subset S of . The Hilbert problem (is there an 
algorithm?) can be expressed as follows: is S a computable set? The answer 
is no. The answer was a long time coming; it is the result of the cumulative 
efforts of J. Robinson (1952), M. Davis (1953), H. Putnam (1961), and Y. 
MatijaseviC (1970). 

The central concept in the proof is that of a Diophantine set, and the 
major step proves that every computable set is Diophantine. The tech-
niques make ingenious use of elementary number theory (e.g., the Chinese 
remainder theorem, and a part of the theory of Fibonacci numbers , or, 
alternatively, of Pell's equation). The proof exhibits some interesting Dio-
phantine sets whose Diophantine character is not at all obvious (e.g., the 
powers of 2, the factorials, and the primes). 

One way to prove that S (the index set of the solvable equations) is not 
computable is by contradiction. If S were computable, then it would follow 
(by a slight bit of additional argument) that each particular Diophantine 
set (i.e., the solution set of each particular equation) is computable, and 
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hence (by the "major s tep" of the preceding paragraph) that the comple-
ment of every Diophantine set is Diophantine. The contradiction is derived 
by exhibiting a Diophantine set whose complement is not Diophantine. 

This last step uses a version of the familiar Cantor diagonal argument . 
The idea is "effectively" to enumerate all Diophantine subsets of Z+, as 
{D,. D2, D3,...}, say, prove that the set D* = {n:n ED,,} is Diophantine 
(that takes some argument) , and, finally, to prove that the complement 
Z+ - D* = {n:n £ D„} is not Diophantine ( that 's where Cantor comes in). 
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4. Simple Groups . So much for the foundations. The next subject up 
the ladder is algebra; in the present instance, group theory. 

Every group G has two obvious normal subgroups, namely G itself and, 
at the other extreme, the subgroup 1. A group is called "s imple" if these 
are all the normal subgroups it has. 

Simple groups are like prime numbers in two ways: they have no proper 
parts , and every finite group can be constructed out of them. (By general 
agreement the trivial positive integer 1 is not called a prime, but the trivial 
group 1 is called simple. Too bad, but that ' s how it is.) 

Suppose, indeed, tha t G is finite, and let G, be a maximal normal sub-
group of G. (To say that G ι is maximal means that G ι is a proper normal 
subgroup of G that is not included in any other proper normal subgroup of 
G.) If G is simple, then G, = 1; in any event, the maximality of G, implies 
that the quotient group G / G , is simple. The relation between G, G, , and 
G / G , (group, normal subgroup, quotient group) is sometimes expressed by 
saying that G is an extension of G / G , by G, . In this language, every finite 
group (except the trivial group 1) is an extension of a simple group by a 
group of strictly smaller order. The statement is a group-theoretic analogue 
of the number-theoretic one that says that every positive integer (except 1) 
is the product of a prime by a strictly smaller positive integer. 

If G, is not trivial, the preceding paragraph can be applied to it; the 
result is a maximal normal subgroup G 2 in G,, such that G, is an exten-
sion of the simple group G , / G 2 by G 2 . The procedure can be repeated so 
long as it produces non-trivial subgroups; the end-product is a chain 
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G = Go D G, D G2 D •• · D G„ = 1 

(a "composition series") with the property that each G,/G, + , is simple 
(i = 0 , . . . , η - 1). A great part of the problem of getting to know all 
finite groups reduces in this way to the determination of all finite simple 
groups. (The celebrated Jordan-Hölder-Schreier theorem is the comforting 
reassurance that , to within isomorphism, the composition factors G,/G, + 1 

are uniquely determined by G, except for the order in which they occur.) 
The abelian ones among the finite simple groups are easy to determine: 

they are just the cyclic groups of prime order. That ' s easy. What ' s hard is 
to find all non-abelian ones. Some examples of simple groups are easy to 
come by; among permutation groups, for instance, the most famous ones 
are the alternating groups of degree 5 or more. The known simple groups 
did not exhibit any pattern, and even the simplest questions about them 
resisted at tack. Burnside conjectured, for instance, that every non-abelian 
simple group has even order, but that conjecture stood as an open problem 
for more than 50 years. 

In a spectacular display of group-theoretic power, Feit and Thompson 
(1963) settled Burnside's conjecture (it is true). The proof occupies an 
entire issue (over 250 pages) of the Pacific Journal. It is technical group 
theory and character theory. Some reductions in it have been made since it 
appeared, but no short or easy proof has been discovered. The result has 
many consequences, and the methods also have been used to attack many 
other problems in the theory of finite groups; a subject that was once pro-
nounced dead by many has shown itself capable of a vigorous new life. 
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5. Resolution of Singularities. Algebra becomes richer, and harder , 
when it is mixed with and applied to geometry; one of the richest mixtures 
is the old but very vigorous subject known as algebraic geometry. This 
section reports the solution of an old and famous problem in that subject. 

Let k be an algebraically closed field, and let k" be, as usual, the n-
dimensional coordinate space over k. (The heart of the matter in what 
follows will be visible to those who insist on sticking to the field of complex 
numbers in the role of k.) An "affine algebraic variety" V in k" is the locus 
of common zeros of a collection of polynomials in η variables with coef-
ficients in k. Since only the zeros matter, the collection itself is not im-
portant; it can be replaced by any other collection that yields the same 
locus. Thus, if R is the ring of all polynomials in η variables with coef-
ficients in k, and if / is the ideal in R generated by the prescribed collec-
tion, then / will define the same variety; there is, therefore, no loss of 
generality in assuming that the collection was an ideal to begin with. 
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The objects of interest on varieties are their "singular points" . Intuitively, 
these are points where the "tangent vectors" are not as they should be . 
Consider, for example, the curves defined by 

y2 = x3 + JC2 and y2 = x3. 

(Since the ground field was restricted to be algebraically closed, the real 
planar curves with these equations are not the right things to look at, but 
they are more lookable at than the complex curves, which lie in the com-
plex plane. Warning: the complex plane has four real dimensions. To the 
algebraic geometer, the familiar "complex p lane" of analysis is the com-
plex line.) The first of these comes in to the origin from the first quadrant 
with slope 2, has a loop in the left half plane, and goes out from the origin 
to the fourth quadrant with slope - 2; it has the origin as a double point. 
The other one comes in to the origin from the first quadrant with slope 0, 
and goes out the same way to the fourth quadrant ; it has the origin as a 
cusp. 

The effective way to deal with singular points begins by giving a purely 
algebraic description of them. Consider, for this purpose, the ring Rv of 
polynomial functions on V( i . e . , the restrictions of the polynomials in R to 
V). If Nv is the ideal of R consisting of the polynomials that vanish on V, 
then, clearly, Rv = R/Nv. Each point a = ( α , , · . · , a„) of V induces a 
maximal ideal Na in R (consisting of the set of polynomials that vanish at 
a ) ; clearly Nv C Na. 

The next step (in the program of defining singular points algebraically) 
is to form a new ring that studies the local behavior of functions near « . 
The idea is (very roughly) this, (i) Consider pairs (U, f), where U is a "neigh-
borhood" of a a n d / i s a rational function with no poles in U. (ii) Define an 
equivalence relation for pairs by writing (U, f) ^ ( ί / ' , / ' ) exactly when 
there is a neighborhood U" of a, included in U Π U', such that / = / ' on 
U". (iii) The equivalence classes ("germs") form a ring (with, for example, 

Wf)] + Kir,/')] = κι/η ί/',/ + /')]), 

called the "local r ing" of V at a. 
From the algebraic point of view, the preceding topological considera-

tions are just heuristic; they will now be replaced by an algebraic construc-
tion. The process is, appropriately, called "localization", (i) Consider pairs 
(/ g), w h e r e / and g are in R and g € Na- (ii) Define an equivalence rela-
tion for pairs by writing (/, g) ~ (f',g') exactly when there is an h not in 
Na such tha t h • (fg ' - gf') = 0. (iii) Write f/g for the equivalence class 
of (/, g). The equivalence classes form a ring Ra (with the usual rules of 
operations for fractions). The ring Ra is indeed a "local r ing" in the cus-
tomary algebraic sense: it has a unique maximal ideal, namely the one 
formed by the elements of Ra that vanish at a. 
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To motivate the next step, pretend, again, tha t the subject is not al-
gebraic geometry, but analytic geometry. In that case R„ would consist of 
Taylor series at a convergent near and the ideal N,r of germs vanishing 
at a would consist of the Taylor series at a with vanishing constant t e rm. 
The linear terms of a Taylor series are, in some sense, first order differen-
tials. One way to capture just those terms is to " ignore" higher order 
terms. More precisely: consider the ideal Nl, which, in the analytic case, 
consists of the Taylor series with vanishing constant term and vanishing 
linear term, and form N„/N*,. 

The definition is now easy to formulate. The "dimension" d of V is, by 
definition, the minimum of the dimensions (over the field k, of course) of 
all the quotient spaces NJN};, a point a is "s ingular" when dim (NJND > 
d. It is not difficult to see that for the two curves mentioned as examples 
above, the origin is indeed a singular point in the sense of this definition. 

One of the main problems of algebraic geometry is to "get rid o f singu-
lar points. For this purpose the discussion is restricted to " irreducible" 
varities, i.e., to the ones for which Rv is an integral domain, or, equiva-
len t^ , Nv is a prime ideal. In that case, form the field of fractions Fv of Rv. 
Two varieties V and W are "birationally equivalent" if Fv and Fw are 
isomorphic. This means roughly that V and W parametrize one another by 
rational mappings at all but finitely many places. The problem of "resolu-
tion of singularities" is that of finding a non-singular variety birationally 
equivalent to V. 

The subject has a long history. Curves were handled by Max Noether in 
the 19th century. Surfaces were the subject of much geometric discussion 
by the Italian school; a rigorous proof was found by R . J. Walker (1935). 
For varieties of arbitrary dimension, over fields of characteristic 0, the final 
victory was inspired by Zariski's work; it was won by Hironaka (1964). 
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6. Weil Conjectures. The mathematician's work is often most difficult 
(and most rewarding) when he reasons by analogy, when he guesses that 
this situation ought to be just like that one. In 1949 A. Weil, reasoning in 
this way, proposed three conjectures that have profoundly influenced the 
development of algebraic geometry over the past 25 years. 

The conjectures appeared in a paper entitled "Numbers of solutions of 
equations in finite fields", which was ostensibly a survey of previous work. 
Counting the number of solutions of a polynomial equation in several 
variables over a finite field was a classical problem, investigated by Gauss , 
Jacobi, Legendre, and others, but Weil took a new point of view. To 
understand his approach, consider the special case of the homogeneous 
equation 
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( t ) • • · + α,Χΐ = 0, 

where the coefficients α, are in the prime field F of ρ elements. The basic 
problem is to count the number of solutions in F, bu t , to number theorists, 
it is just as important to count the number of solutions in any finite ex-
tension field of F. Recall that , for every positive integer k, there is a unique 
extension field Fk of F with pk elements. What Weil did was to count the 
number of solutions of ( t ) in each field Fk, and then code that information 
in a generating function. 

To do this economically, examine the solution set of an equation such as 
( t ) . There is, of course, always the trivial solution, where all the x, are 
zero; that one is justly regarded as trivial. If (*„, JCI; . . . , xr) is a non-trivial 
solution, and if 0 Φ c G F k , then (cx0, cxu..., cxr) is also a non-trivial solu-
tion. Each non-trivial solution generates in this way pk - 1 others, and 
there is no virtue in counting them all separately. It is natural , therefore, 
to consider the r-dimensional "projective space" POP*), i .e. , the set of 
non-trivial ordered (r + l)-tuples of elements of Fk, where two are identi-
fied if one is a scalar multiple of the other. (This is exactly analogous to 
the familiar real and complex projective spaces.) The problem in these 
terms is to count the number of "poin ts" in /^(F*) that are "solut ions" 

Tha t is precisely what Weil did. He let Nk be the number of solutions of 
( t ) in Ρ (Fk), considered the generating function G, 

and proved a remarkable statement: G is the logarithmic derivative of a 
rational function. That is: there exists a rational function 2 such that 

o f ( t ) . 

or, in other words, if 

then Ζ is rational. The function Ζ satisfies a functional equation analogous 
to the one satisfied by the Riemann zeta function, and it is appropriate to 
refer to Ζ as the zeta function associated with the equation ( t ) . Motivated 
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by classical problems that the Riemann zeta function gave rise to , Weil 
studied and was able to determine many properties of the zeros and the 
poles of Z. 

Here is where Weil's paper reaches its climax. Weil wanted to extend 
the results about ( t ) to algebraic varieties in F^F*) , i.e., to the solution sets 
of systems of homogeneous equations in r variables. The notion of a zeta 
function, originally defined by Riemann, was extended by Dedekind to 
algebraic number fields, by Artin to function fields, and now, by Weil, to 
algebraic varieties. (The varieties to be considered should be non-singular. 
It doesn't matter here what the general definition of that condition is; for 
most fields it can be defined as usual by requiring tha t the Jacobian of the 
system of equations have maximal rank at every point.) Given a system of 
equations, with coefficients in F, let Nk be, as before, the number of solu-
tions in i * " ^ ) . Weil advanced the following conjectures. One: the function 
Z , defined as before by 

is rational. Two: Ζ satisfies a particular functional equation, which, as 
before, bears a striking resemblance to the one satisfied by the Riemann 
zeta function. Three: the reciprocals of the zeros and the poles of Ζ are 
algebraic integers and their absolute values are powers of VP- (This is 
called the generalized Riemann hypothesis.) 

All this might seem far removed from what is normally thought of as 
geometry, and, although several examples were known, it might seem 
that Weil made his conjectures on strikingly little evidence. What was 
really behind the conjectures? The answer is contained in the last para-
graph of Weil's paper, where he suggests that there is an analogy between 
the behavior of these varieties (for fields of characteristic p) and that of the 
classical varieties (for the field of complex numbers) . 

In 1960 Dwork established the rationality conjecture (without the condi-
tion of non-singularity). The final t r iumph came in 1974: using twenty 
years' of results of the Grothendieck school, Deligne established all the 
Weil conjectures, and, perhaps more importantly, proved tha t there is a 
beautiful connection between the theory of varieties over fields of charac-
teristic ρ and classical algebraic geometry. "God ever geometrizes", said 
Plato, and "God ever arithmetizes", said Jacobi; the Weil conjectures 
show, better than anything else, how He can do both at once. 

Z(u) = exp 
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7. Lie Groups. So much for algebra, with or without geometry. The next 
subject points toward some of the later analytic ones by mixing algebra 
with topology. The result, like a few other outstanding results of mathe-
matics, seems to get something for nothing, or, at the very least, to get 
quite a lot for an astonishingly low price. One of the most famous results 
of this kind occurs in the early part of courses on complex function theory: 
it asserts that a differentiable function on an open subset of the complex 
plane is necessarily analytic. 

Hilbert 's fifth problem asked for such a something-for-nothing result. 
The context is the theory of topological groups. A topological group is a set 
that is both a Hausdorff space and a group, in such a way that the group 
operations 

(x, j>)i-»xy and xh-»jc~' 

are continuous. A typical example is the set of all 2 χ 2 real matrices of 
the form with χ > 0; the topological structure is that of the right half 
plane (all (x, y) with χ > 0), and the multiplicative structure is the usual 
one associated with matrices. Equivalently: define multiplication in the 
right half plane by 

(x.y) • (x',y') = (xx',xy' + y); 

since 

i -y 

it is clear that both multiplication and inversion are continuous. 
This example has an important special property: it is "locally Euclidean" 

in the sense that every point has a neighborhood that is homeomorphic to 
an open ball in (2-dimensional) Euclidean space. (Equivalently: every point 
has a "local coordinate system".) An even more important special property 
of the example is that the group operations, regarded as functions on the 
appropriate Euclidean space, are not only continuous but even analytic. 
If a group is locally Euclidean, i.e., if it can be "coordinatized" at all, then 
there are many ways of coordinatizing it; if at least one of them is such 
that the group operations are analytic, the group is called a "Lie g r o u p " . 
Hilbert 's fifth problem was this: is every locally Euclidean group a Lie 
group? 
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The analogy of this problem with the one in complex function theory is 
quite close. It is relatively elementary that a twice-differentiable function is 
analytic; it has been known for a long time that if a topological group has 
sufficiently differentiable coordinates, then it has analytic ones. 

Immediately after the discovery of Haar measure, von Neumann (1933) 
applied it to prove that the answer to Hubert ' s question is yes for compact 
groups. A little later Pontrjagin (1939) solved the abelian case, and Chevalley 
(1941) solved the solvable case. (Sorry about that , but "solvable" is a 
technical word here and its use is unavoidable.) 

The general case was solved in 1952 by Gleason and, jointly, by 
Montgomery and Zippin; the answer to Hubert ' s question is yes. Wha t 
Gleason did was to characterize Lie groups. (Definition: a topological 
group "has no small subgroups" if it has a neighborhood of the identity 
that includes no subgroups of order greater than 1. Characterization: a 
finite-dimensional locally compact group with no small subgroups is a Lie 
group.) Montgomery and Zippin used geometric-topological tools (and 
Gleason's theorem) to reach the desired conclusion. 

Warning: the subject cannot be considered closed. The question can be 
generalized in ways that are both theoretically and practically valuable. 
Groups can be replaced by "local groups" , and abstract groups can be 
replaced by groups of transformations acting on manifolds. The best kind 
of victory is the kind that indicates where to look for new worlds to con-
quer, and the one over Hubert 's fifth problem was that kind. 
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8. Poincare* Conjecture. A "manifold" is a topological space (a separable 
Hausdorff space to be exact) that is locally Euclidean. Manifolds have been 
the central subject of topology for many years, and still are. Huber t ' s fifth 
problem was about group manifolds; the Poincare* conjecture is about the 
connectedness properties of smooth manifolds. A "differential manifold" 
is a manifold endowed with local coordinate systems such tha t the change 
of coordinates from one coordinate neighborhood to an overlapping one is 
smooth. "Smooth" in this context is a generally accepted abbreviation for 
C°°, i .e. , for infinitely differentiable. 

The axioms of Euclidean plane geometry characterize the plane. This 
kind of activity (find the central core of a subject, abstract it, and use the 
result as an axiomatic characterization) is frequent and useful in mathe-
matics. Since spheres are the principal concept of a large par t of topology, 
it is natural to try to subject them too to the axiomatic approach. The 
at tempt has been made , and, to a large extent, it was successful. 
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The 1-sphere, for instance (i.e., the circle), is a compact, connected 1-
manifold (i.e., a manifold of dimension 1), and that ' s all it is: to within a 
homeomorphism every compact connected 1-manifold is a 1-sphere. 

For the 2-sphere, the facts are more complicated: both the 2-sphere S2 

and the torus T2 ( = 5 ' χ 5 1 ) are compact connected 2-manifolds, and 
they are not homeomorphic to each other. To distinguish S2 from T2 and, 
more generally, from a sphere with many handles, it is necessary to ob-
serve tha t , although both 5 2 and T2 are connected, S2 is more connected. 
In the appropriate technical language, S2 is "simply connected" and T2 is 
not. The relevant definitions go as follows. Suppose that X and Y are 
topological spaces and that / and g are continuous functions from X to Y; 
write / for the unit interval [0 ,1] . The f u n c t i o n s / a n d g are "homotopic" if 
there exists a continuous function h from X x / to Y such tha t h(x, 0) = 
fix) and h(x, 1) = g(x) for all x. (Intuitively: / can be continuously de-
formed to g.) The space Y is simply connected if every continuous function 
from £ ' to Y is homotopic to a constant. (Intuitively: every closed curve 
can be shrunk to a point.) Once this concept is at hand, the characteriza-
tion of the 2-sphere becomes easy to state: to within a homeomorphism, 
every compact, connected, simply connected 2-manifold is a 2-sphere. 

The discussion of dimensions 1 and 2 does not yet provide a firm basis 
for guessing the general case, but it does at least make the following con-
cept plausible. There is a way of defining "fc-connected" that generalizes 
"connected" (k = 0) and "simply connected" (k = 1): just replace S1 in 
the definition of simple connectivity by S',j = 0 , 1 , . . . , k. Thus : a space 
Y is Ä-connected if, for each j between 0 and k inclusive, every continuous 
function from S< to Y is homotopic to a constant. 

The general Poincare conjecture is that if a smooth compact η-manifold 
is (n — l)-connected, then it is homeomorphic to S". For η = 1 and η = 2 
the result has been known for a long time; the big recent step was the 
proof of the assertion for all η > 5. The proof was obtained by Smale (1960). 
Shortly thereafter, having heard of Smale's success, Stallings gave another 
proof for η > 7 (1960) and Zeeman extended it to η = 5 and η = 6 (1961). 
For η = 3 (the original Poincare conjecture) and for η = 4 the facts are not 
yet known. 

Actually Smale proved a much stronger result. He showed how certain 
manifolds could be obtained by gluing disks together. His results provide 
a starting point for a classification of simply connected manifolds. 
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9. Exotic Spheres. A "diffeomorphism" between two differential mani-
folds is a homeomorphism such that both it and its inverse are smooth. 
Homeomorphism is an equivalence relation between manifolds; the equiva-
lence classes (homeomorphism classes) consist of manifolds with the same 
topological properties. Similarly, diffeomorphism is an equivalence relation 
between differential manifolds, and the equivalence classes (diffeomorph-
ism classes) consist of manifolds with the same differential properties. Are 
these concepts really different? Is diffeomorphism really more stringent 
than homeomorphism? The answer is yes, even for topologically very well-
behaved manifolds, bu t that is far from obvious. An example constructed 
by Milnor in 1956 came as a surprise, and, according to Hassler Whitney, 
that single, isolated example led to the modern flowering of differential 
topology. 

Milnor's example is the 7-sphere. For every positive integer n, the w-sphere 
S" is embedded in Euclidean (n + l)-space in a natural way, and thus has 
a natural differential structure. Milnor showed that there exists a differ-
ential manifold that is homeomorphic but not diffeomorphic to S7; such a 
manifold has come to be called an "exotic" 7-sphere. 

To prove the assertion, there are three problems to solve: (1) find a 
candidate, (2) prove that it is homeomorphic to S7, and (3) prove tha t it is 
not diffeomorphic to S7. The first problem was easy (with hindsight); the 
candidate was a space (a 3-sphere bundle over the 4-sphere) tha t had been 
familiar to topologists for a number of years. Milnor solved the second 
problem using Morse theory. A Morse function on a differential manifold 
is a real-valued smooth function with only non-degenerate critical points. 
The n-sphere has a Morse function with exactly two critical points (project 
onto the last coordinate and consider two poles). A theorem of G. Reeb's 
goes in the other direction: if a differential manifold has a Morse function 
with exactly two critical points, then it is homeomorphic to a sphere. Milnor 
showed that his candidate had such a Morse function. The third problem 
was the hardest . Here Milnor used two facts: first, tha t S7 is the boundary 
of the unit ball in Ä 8 , and, second, that his candidate was presented as the 
boundary of an 8-dimensional manifold W. If the candidate were diffeo-
morphic to S7, then, using the diffeomorphism, one could glue the unit ball 
onto W and obtain an 8-dimensional manifold tha t (as Milnor showed) 
cannot exist. 

Once it was known that exotic 7-spheres could exist, it was natural to 
ask how many there were, i.e., how many diffeomorphism classes there 
were. Milnor and Kervaire showed that there are 28. What about the other 
spheres? Again Milnor and Kervaire showed that the set of differential 
η-spheres (modulo diffeomorphism) could be made into a finite abelian 
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group, with the "na tu r a l " sphere as the zero element; the group operation 
is the "connected sum" , which is the natural gluing together of manifolds. 
The group is trivial for η < 7; it has order 28 for η = 7, order 2 for η = 8, 
order 8 for = 9, order 6 for η = 10, and order 992 for η = 11. For η = 
31 , there are over sixteen million (diffeomorphism classes of) exotic spheres. 

There are two systematic ways of constructing exotic spheres. The first is 
Milnor's "p lumbing" construction (joining holes by tubes) , which presents 
exotic spheres as boundaries of manifolds assembled by cutting and past-
ing. The other method (due to Brieskorn, Pham, and others) gives preas-
sembled examples. For each finite sequence (a , , a„) of positive 

integers, let Σ (ai a„) be the set of those zeros of the polynomial zi" 1 + 
. . . + ζ π

α η that lie on the unit sphere in complex ra-space. Milnor gave 
precise criteria on the η-tuple that ensure that this manifold is homeo-
morphic to a sphere of the appropriate dimension (which is 2« - 3 , by the 
way). For example, as k runs from 1 to 28, the manifolds 2 ( 3 , 6k - 1, 2, 
2, 2) provide representatives for the 28 different diffeomorphism classes of 
7 spheres. 
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10. Differential Equat ions . Differential concepts play an important role 
everywhere, including pure algebra and, as above, topology. Differential 
equations are what make the world go around, and anyone who wants to 
predict and perhaps partly to change how the world goes around must 
know about differential equations and their solutions. 

Differential equations are classified in a curiously primitive manner ac-
cording to the number of independent variables that are involved in differ-
entiation, and the way in which the unknown functions enter. The classifi-
cation is " o n e " and " m a n y " in the one case, and "good" and "not-so good" 
in the other, or, in terms of the corresponding adjectives that apply to the 
equations, "ordinary" and "par t i a l " in the one case, and " l inear" and 
"non-l inear" in the other. This report is concerned with linear equations 
only, and partial ones at that ; ordinary ones make just a brief appearance 
at the beginning, to set the stage. 

The beginnings of the theory of ordinary linear differential equations are 
simple and satisfactory; they can be found in elementary textbooks. If ρ is 
a polynomial 

ρ(ξ) = Σ α,,ξ', 
j-o 
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p(x, ξ) = α,ξ, + α 2 ξ 2 + α 3 ί 3 , 

and if D = d/dx, then Ρ = p(D) is a differential operator, and Pu = g 
(for given g and unknown u) is the typical linear O .D .E . with constant 
coefficients. If g is continuous (a reasonable, useful, but much too special 
assumption), then the equation always has a solution. The conclusion 
remains true even for variable coefficients (i.e., in case the α/s themselves 
are functions of x), provided they are subjected to some mild restrictions. 
It is, for instance, sufficient that the a's be continuous and that the "pr in-
cipal" coefficient ak have no zeros. 

For partial differential equations even the beginnings are non-trivial 
and new, and, for instance, even the theory for constant coefficients be-
longs to the most recent period of research. The formulation of the prob-
lem is easy enough: consider a polynomial in several variables . . , £„, 
and obtain a differential operator Ρ by replacing £,· by 3 /9.x,; the problem is 
to solve Pu = g for u. 

To avoid some not especially enlightening and not especially useful 
epsilontic hairsplitting, it has become customary to take g (and to seek u) 
in either the most or the least restrictive class of objects in sight. The most 
restrictive class consists of the smooth (infinitely differentiable) functions 
on whatever domain is under consideration (HR", an open set in HR", a 
manifold); the other extreme is represented by Laurent Schwartz's distribu-
tions. (The motivation of distribution theory is that functions / induce 
linear functionals Φ | Φ (x)f(x)dx on C°°. A "distr ibution" is a suitably 
continuous linear functional, not necessarily one induced by a function. 
The analogy between the generalization and its source suggests an ap-
propriate definition of differentiation for distributions, and with that 
definition the theory of partial differential equations is off and running.) 

Partial differential equations is an old subject and a widely applied one, 
and it is astonishing that the basic theorem is as recent as it is; it seems 
only the day before yesterday that Ehrenpreis (1954) and Malgrange (1955) 
proved that every linear P .D.E . with constant coefficients is solvable. If 
the right hand side is smooth, there is a smooth solution; even if the right 
hand side is allowed to be an arbitrary distribution, there is a distribution 
solution. The subject is exhaustively treated in Ehrenpreis 's book (1962) 
and can be regarded as closed. 

So far so good; the proofs are harder than for O .D.E . ' s , but the facts 
are pleasant. The theory for variable (i.e., function) coefficients is much 
harder , much less known, and nowhere near finished. Two exciting contri-
butions to it in the late 1950's showed that old guesses and old methods 
were woefully inadequate. 

As for old guesses: Hans Lewy produced (1957) an inspired and amaz-
ingly simple example of a P .D .E . with variable (but very smooth) coef-
ficients that has no solutions at all. Lewy's polynomial is of degree 1, 
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where the coefficients α,, α 2 , α 3 are functions of three variables χ,, x 2 , x 3 , 
and, in fact, the first two are constants: 

α, = - i , a 2 = 1, a 3 = - 2(x, + /x 2 ) . 

The corresponding differential operator is, of course, 

_ . 9 9 „ , . . 9 
^ = + ä 2 U i + « 2 ) 5 - · 

oar, djc2 o x 3 

What Lewy proved is that for almost every g in C°° (in the sense of Baire 
category) the equation Pu = g is satisfied by no distribution whatever. 

At about the same time (1958) Calderon studied the uniqueness of the 
solution of certain important partial differential equations (under suitable 
initial conditions). He showed, in effect, that if Pu = 0, with u = 0 for t < 
0 (intuitively, "t" here is t ime), then, locally u remains 0 for some positive 
t ime. Calderdn's methods were transplanted from harmonic analysis; they 
introduced singular integrals into the subject, whence, a little later, came 
pseudo-differential operators and Fourier integral operators. These ideas 
have dominated the subject ever since. 

Hörmander analyzed and generalized Lewy's example (1960). What 
makes it work, he pointed out, was that the coefficients a recomplex ; what 
is fundamental is the behavior of the commutator of Ρ and P. The operator 
Ρ here is obtained simply by replacing each coefficient by its complex 
conjugate. (In operator language: Pu = (Pü).) More precisely: consider, 
for each polynomial in ( £ 1 £„) its "principal pa r t " , i.e., the par t that 
involves the terms of highest degree only. (For Lewy's example there is no 
other par t . ) If ρ (χ, £) is the principal part , write b(x, £) for the "Poisson 
bracket" , 

J \ 9 i y dxj dxj dkj) 

Assertion: if, for some (x°, £°), the principal part p(x°, £°) vanishes but the 
Poisson bracket b(x°, £°) does not, then ρ is, in the sense of Lewy, not 
solvable in any open set containing x°. It is easy to see that the Lewy exam-
ple is covered by the Hörmander umbrella. Indeed: since 

P = - / $ ! + ξ 2 - 2 ( X I + ΐ Χ 2 ) ξ 3 , 

ρ = ίξ, + ξ 2 - 2(χ, - ι 'χ 2 ) ί 3 , 

elementary computation yields 
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b = m3, 
and it becomes clear that for every χ = (χ,, x2, x3) there is a £ = (£,, £ 2, £3) 
such that p(x, | ) = 0 and b(x, ί ) Φ 0. 
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11. Index Theorem. The Atiyah-Singer index theorem (1963) spans two 
areas of mathematics, topology and analysis, and that ' s not an accident of 
technique but in the nature of the subject: the span is what it 's all about . 
Theorems with such a broad perspective are usually the ones that are the 
most useful and the most elegant, and the index theorem is no exception. 
The very breadth of the theorem requires, however, that an expository 
sketch of it proceed obliquely. In what follows we describe, first and mainly, 
a historical and conceptual precursor, the Riemann-Roch theorem, and 
then indicate, briefly, how the Atiyah-Singer theorem generalizes it. 

The classical Riemann-Roch theorem deals with the dual nature 
(topological and analytic) of a Riemann surface. Every compact Riemann 
surface is homeomorphic to a (two-dimensional) sphere with handles. The 
number of handles, the "genus" , completely determines the topological 
character of the surface; that part is easy. The analytic structure is more 
complicated. It consists of a covering by a finite number of open sets and 
of explicit homeomorphisms from the complex plane fiT to each open set, 
which define holomorphic functions on the overlaps. (It is convenient and 
harmless to use the homeomorphisms to identify each open set in the 
covering with an open set in <C; that is tacitly done below.) If, for example, 
the surface is the sphere (with no handles), think of C as slicing through 
the equator, and use stereographic projections (toward the north and south 
poles) as the homeomorphisms. There are two open sets here, the com-
plement of the north pole and the complement of the south pole; the holo-
morphic function of the overlap is given by w(z) = 1/z. 

A smooth function on a Riemann surface can be viewed as a set of func-
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tions on, say, the open unit disk <C (one for each of the open sets of the 
covering) that are smooth (C°°) and transform into one another under the 
changes of variables induced by the overlaps. (If, that i s , / and g are two of 
these functions, and w is the transformation on the disk induced by going 
via the appropriate homeomorphism to the open set corresponding t o / and 
coming back from the overlap with the open set corresponding to g, then 

f(z) = g(w(z)).) The function on the Riemann surface is called holomor-
phic (or meromorphic) if each of these functions on the disk is holomorphic 
(or meromorphic). Another necessary concept for the analytic study of a 
Riemann surface are constants: that is essentially what Liouville's theorem 
the form p(x, y)dx + q(x, y)dy, where ρ and q are complex-valued smooth 
functions that , on the overlaps, satisfy the chain rule for change of vari-
ables. A holomorphic differential is one of the form f(z)dz, where / is 
holomorphic and dz = dx + idy. (In the notation used above, the overlap 
relation for these differentials becomes/ (z )dz = g(w)dw = g(w(z))w'(z)dz; 
the functions / and g no longer merely transform into one another, but are 
altered by the contribution of the differentials as well.) 

The analytic properties of a Riemann surface are the properties of the 
holomorphic (and meromorphic) functions and differentials that it possesses. 
A well-known result is that the only holomorphic functions on a compact 
Riemann surface are constants: that is essentially what Liouville's theorem 
says. The Riemann-Roch theorem says much more. In its simplest form it 
deals with a compact Riemann surface S of genus g, and η points z , , . . . , z„ 
on S. Let J F be the vector space of meromorphic functions on S with poles 
of order not greater than 1 at each z, (and nowhere else); let D be the 
vector space of holomorphic differentials with zeros of order not less than 1 
at each z, (and possibly elsewhere). Conclusion: 

dim F - dim D = 1 + η - g. 

(In the special case of the classical Liauville theorem, g = 0, η = 0, and 
dim D = 0.) The important aspect of the conclusion is that a quantity 
described completely in analytic terms can be computed from nothing but 
topological da ta . 

In the special case η = 0, F is the vector space of holomorphic functions 
on S (so that dim F = 1) and D is the space of all holomorphic differen-
tials. There is a linear map , conventionally denoted by 3 , from the vector 
space of all smooth functions on S to the vector space of all smooth differen-
tials: write 

« df 
3 / = ις-dz J dz 

in each of the open sets of the prescribed covering. The map 3 is an ex-
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ample of a differential operator. The kernel of 3 consists precisely of the 
functions satisfying the Cauchy-Riemann equations; in other words 

ker 3 = F. 

The cokernel of 3 (the quotient space of the space of all smooth differen-
tials modulo the image of 3 ) is similarly identifiable with D. The conclusion 
of the Riemann-Roch theorem takes, in this case, the form 

dim ker 3 - dim coker 3 = 1 - g. 

The Atiyah-Singer theorem is a generalization of the Riemann-Roch 
theorem in that it too states that a certain analytically defined number 
(the "analytic index") can be computed in terms of topological da ta . 
Which aspects are generalized? All. To begin with, the Riemann surface is 
replaced by an arbitrary compact smooth manifold Μ of arbitrary dimen-
sion. The vector spaces of smooth functions and smooth differentials are 
replaced by vector spaces of smooth sections of complex_vector bundles 
over Μ (in fact, complexes of vector bundles). The m a p 3 , finally, is re-
placed by a differential operator Δ, which satisfies a certain invertibility 
condition (called ellipticity). It follows that both ker Δ and coker Δ are 
finite-dimensional; the difference of the two dimensions is the analytic 
index. The conclusion is that the analytic index can be computed in terms 
of topological invariants (the "topological index") , which are very sophis-
ticated generalizations of the genus. 

Even in its relatively short life the Atiyah-Singer index theorem has had 
important and interesting consequences, and has been proved in at least 
three enlighteningly different ways. A recent proof depends on the study of 
the heat equation on a manifold. 
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12. Epilogue. Concepts, examples, methods, and facts continue to be 
discovered; problems get reformulated, placed in new contexts, better 
understood, and solved every day. We hope that the ten examples above 
have communicated at least a part of the breadth , depth, excitement, and 
power of the mathematics of our t ime. Mathematics is alive, and it's here 
to stay. 





MATHEMATICS AND THE GOVERNMENT: THE 
POSTWAR YEARS AS AUGURY OF THE 
FUTURE 

Mina S. Rees 

My topic is Mathematics and the Government; I shall be addressing 
myself to the years following World War II , years during which significant 
support of scientific research by the Federal Government stimulated an 
expansion of scientific activity that placed the United States in the fore-
front of scientific achievement. The level and scope of this federal support 
was a new phenomenon, a fall-out from the participation of scientists and 
mathematicians in the scientific work that aided the country's military 
efforts in World War II . Though mathematicians had certainly been in-
volved in government programs long before the war, e.g., in the work of 
the Coast and Geodetic survey, and of the Agricultural Extension Service, 
the substantial support of the research of university mathematicians that 
followed the war introduced a new dimension into the relationships be-
tween the government and mathematicians, and changed the life style of 
many university people. I shall try to record some aspects of the govern-
ment ' s activities and of mathematicians ' responses to government overtures 
from the t ime of the establishment of the Office of Naval Research im-
mediately after the war till about the time of the establishment of the Na-
tional Science Foundation in 1950.1 shall record some of the ways in which 
government-supported research resulted in the flowering of new or pre-
viously neglected fields which, since the t ime of their revival, have blos-
somed and become par t of the familiar mathematical scene on college and 
university campuses. 

For many of our younger mathematicians, the idea of a system of graduate 
education with no government fellowships, no grant support from govern-
ment agencies, no government contracts must seem strange indeed. Yet 
all these things were almost unheard of in mathematics departments before 
World War I I . Fellowship support , when it was available to mathematicians, 
was usually provided by the university itself or funded by one of the private 
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foundations; and contract support for university research was largely initi-
ated by the Navy with the establishment of the Office of Naval Research in 
1946. It should, perhaps, be emphasized that that office was never au-
thorized to support educational programs and therefore never established a 
program of fellowships. The device that was accepted in lieu of fellowships 
was originally the research assistantship which has earned an honorable 
place in the continuing programs of the National Science Foundation and 
other governmental agencies, and later the Research Associateship, which 
provided post-doctoral support . 

For many of the older mathematicians who received their degrees in the 
1930's or early 1940's, my topic must conjure up not only a picture of gov-
ernment support of research and education bu t also the memory of a vari-
ety of assignments during World War I I . For those who found themselves 
in uniform and who were very lucky, the job was to serve as a mathemati-
cian in an Army or Navy installation that needed mathematic ians . One 
conspicuous example of this was Herman Goldstine's assignment to the 
Army's Aberdeen Proving Ground—an assignment tha t had a profound 
effect upon his subsequent career. For others there were posts in industry 
or universities working on wartime undertakings tha t had mathematical 
components; and for still others there was work in Operat ions Research 
Groups attached to Army units abroad. But the activity that had by far the 
greatest influence on the post-war development of mathematics was the 
Office of Scientific Research and Development (OSRD) through the opera-
tion of its Applied Mathematics Panel . The OSRD adapted the concept 
of the procurement contract routinely used by the government for the pur-
chase of goods and equipment , to embrace the purchase from the univer-
sities of research and development in support of military needs. By en-
couraging a limited number of universities to bring together research mathe-
maticians to work under such contracts, the Applied Mathematics Panel 
made mathematical assistance available to large numbers of natural scien-
tists and engineers who provided scientific support for the war effort. The 
wartime performance of these scientists won for science the high regard of 
the military establishment and of Congress and the recognition tha t post-
war expansion of research in the sciences was a national requirement. This 
at t i tude reflected the conviction that the sciences must be strong if the 
country was to maintain itself in the competition for military security, in-
dustrial expansion, and the material well-being of its people which, in 
those days, every one was sure would flow from the applications of scienti-
fic results to technology. 

The importance of a strong base of science and technology for the wel-
fare of an industrial society is still generally acknowledged. In a UNESCO 
report on National Science Policies of the U.S.A. published in 1968, the 
point is emphasized: 1 
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There is a general consensus that science and technology are indispen-
sable to the economic growth of an industrially advanced society . . . 
An acceptable theory of the economic value of research and develop-
ment is not yet at hand . . . [but] . . empirical studies of R&D indicate 
that there is a general strong correlation between quantity of R&D in-
vestment and the resulting number of innovations . . . An issue of grow-
ing national concern has been the distribution of scientific capabilities 
and of federal support by geographical regions. This relates to two im-
portant national objectives: the provision of maximum educational 
opportunity, according only to ability and motivation, to all segments 
of the population, and assurance of equal opportunity for regional 
economic development On the other hand, much R&D effort is 
specifically oriented to non-economic aspects of the public interest and 
is not supported for purposes of its contribution to the economy in the 
normal sense of the term . . . funds are also directly allocated to basic 
science in recognition of its role as an essential underpinning for the 
general social, political and economic objectives of the nation . . . much 
basic research has been supported by the different agencies of govern-
ment and by private industry in areas considered relevant to their interests. 
Because these interests can fluctuate, and sometimes become narrow, 
the National Science Foundation has responsibility for maintaining 
"balance" and the overall "health" of basic research, particularly in 
connection with higher education . . . It is generally conceded that the 
federal support which has made possible so much of the academic re-
search is of great benefit. But there are also criticisms of the effects 
such support has had. 

During World War II , however, and immediately after the war, criti-
cisms and doubts were muted, if they were present at all. Because many of 
the criticisms on university campuses during the late 1960's were directed 
toward the considerable reliance of universities on military support of basic 
research, I believe it is worth quoting a description of the World W a r II 
atmosphere as related by Harvey Brooks: 2 

In a certain sense World War II and the subsequent period of the 
Cold War might be characterized as a love affair between the intellec-
tual community and the government, which affected not only the de-
velopment of science but a much broader range of academic scholarship. 
The Nazi menace united the American intellectual community as noth-
ing else has or could. Nazism was a specific attack on the values that 
the academic community held in highest priority, and the reality of its 
threat was brought home to American academics by a stream of refugees 
from Europe whose names [were] a byword among American scientists— 
Fermi, Wigner, Bethe, Teller, Ewald, Franck, and many lesser luminaries. 
Thus academic intellectuals were well prepared, emotionally and intel-
lectually, to close ranks behind the American war effort, Natural scien-
tists left their home universities and flocked to the war laboratories 
set up by OSRD (Office of Scientific Research and Development). An 
informal and extremely effective system of recruiting for the war effort 
was established within the academic community. 

At the same time humanists and social scientists flocked to the Office 
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of Strategic Services and to the various agencies set up to manage the 
war economy. 

As the war drew toward its close there were leaders, both in the legisla-
tive and in the executive a rms of the government, who were concerned 
lest the vitality and momentum of the wartime research be lost in the post-
war years. This is not surprising since there had always been a clear under-
standing that the activities of the Office of Scientific Research and De-
velopment would be completely terminated at the end of the war. Thus , the 
question of a continuing relationship between science and government was 
discussed at high levels of the government before the end of the war. One 
of those who addressed the question was the Secretary of the Navy, James 
V. Forrestal who, in his annual report to the President in 1945, identified 
the encouragement of research by the Navy as one of the problems worth 
reporting to the President. He said, in par t : 3 

In peace, even more than in war, scientists owe to their nation an obli-
gation to contribute to its security by carrying on research in military 
fields. The problem which began to emerge during the 1944 fiscal year 
is how to establish channels through which scientists can discharge this 
obligation in peace as successfully as they have during the war . . . The 
Navy believes the solution for this problem is the establishment by law 
of an independent agency devoted to long-term, basic, military research, 
securing its own funds from Congress and responsive to, but not domi-
nated by, the Army and Navy . . . The Navy so firmly believes in the 
importance of this solution to the future welfare of the country that 
advocacy of it will become settled Navy policy . . . The Navy feels so deeply 
about the importance of the solution of this problem that it requests your 
intervention, guidance and support on this problem, which transcends 
the responsibility and authority of any single department. 

The Secretary of the Navy was one of many who participated in the dis-
cussion of the need for federal funding of science and of the framework 
in which this funding should be provided. Another participant was Vannevar 
Bush, the wartime head of OSRD, whose book, Science, the Endless Fron-
tier, published in 1945, provided the rationale and stimulated the drive for 
the establishment of a National Science Foundation. (It was not until 1950 
that the Foundation was established.) 

In 1945, like many others, I was asked what I would think of the cre-
ation, within the Navy, of an office that would give universities money to 
pursue basic research in mathematics. I expressed grave doubts . I thought 
it unlikely that mathematicians would be enthusiastic about receiving money 
from the government to support their peacetime research and even more 
unlikely that money from one of the military services would be welcome. 
But the plans for the establishment of the Office of Naval Research went 
forward in spite of my doubts, and that Office was brought into being by 
an act of Congress in 1946. I was invited to go to Washington to set up 
its mathematics program; and, after consulting with some of my wisest 
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friends, I decided to participate in what still seemed to me a somewhat 
uncertain venture. Later, counterpart offices were created by the other two 
military services, and the three offices together carried on programs that 
provided wide support for mathematical research in American universities. 

When I arrived in Washington in August of 1946, it was impossible to 
find a place to live. No apar tments were available and most hotels permitted 
a guest to stay only 5 days. When I found one that extended its hospitality 
for two weeks at a t ime, I was enchanted. I made a virtue of necessity and, 
every two weeks, vacated my room and went on a tr ip to a leading mathe-
matics department. On my return I registered for another two weeks. 

These were the conditions under which I consulted many of the senior 
mathematicians of the United States. Together we evolved the first out-
line of the mathematics program of the Office of Naval Research. Basically 
our decision was to support pure and applied mathematics, statistics and 
computer development with its related numerical analysis to insure the 
sophisticated use of electronic digital computers when they became available. 
At least as important , we would try to establish the philosophy tha t the 
Navy would provide funds to buy time for able mathematicians to carry 
on their research, establishing research assistantships for the education of 
promising young mathematicians whose support seemed to us the key to 
the flowering of mathematical research in the country. Because the Office 
of Naval Research was not authorized to carry on an educational program, 
the purely educational aspects of the establishment of new fields would 
have to be handled by the universities. 

Time and research experience for able students are, of course, com-
ponents that any research project undertakes to provide, bu t the need for 
increasingly expensive equipment that characterized research in the natural 
sciences was not present in mathematics. In the beginning there was 
little else needed by the mathematicians, except, importantly, secre-
tarial assistance. Later, Mathematical Reviews came to rely on government 
support; and page charges were included as essential elements of research 
projects. Travel support , particularly to international conferences, assumed 
continuing importance. But providing research assistantships for promising 
students, summer salaries for senior people, and released time for ser-
ious mathematicians with heavy teaching loads introduced a whole new 
ambience into the mathematics departments of many colleges and 
universities soon after the end of W W I I . Some of our leading mathema-
ticians believe even now that the introduction of this new force onto the 
campus was the most important influence of the new programs, for it 
changed the locus of power, making research people rather than adminis-
trators the determining force in setting educational goals and campus 
procedures. This, of course, varied from university to university. But 
within a few years the government's program had the effect of improving 
the working conditions and increasing the total annual salary of a sub-
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stantial proportion of the country's research mathematicians and providing 
support to a substantial number of graduate students. These were, I 
feel sure, among the forces that made a career in mathematics increasingly 
attractive to able young people. 

Not only did the government's programs have a broad effect on mathe-
maticians across the nation. Some institutions, as well as some departments, 
changed their character under the stimulus of federal dollars. The ONR 
emphasis on analysis, with considerable interest in questions related to 
continuum mechanics, stimulated increased activity in several departments. 
The New York University Graduate Mathematics Depar tment is one of 
the most striking in its use of the new resources, originally in support 
of analysis and , later, much more broadly. With the new funding it 
expanded its activities, assumed a new role in its university, and became 
one of the most distinguished departments in the country. The support of 
some very substantial engineering-oriented mathematical research by the 
Mechanics Branch which, after the first few years of ONR's life, was 
part of the Mathematics Division, extended the Division's influence into 
the engineering schools of a number of universities. One of these that 
exploited the new resources across the span of science and engineering 
was Stanford where not only engineering, but mathematics , including 
applied mathematics, and mathematical statistics flourished. Frederick 
E. Terman, Dean of the Engineering School at Stanford, who later became 
provost and vice president of the university, has commented, in a recent 
letter: 4 

The Office of Naval Research... had a profound effect on the 
development of the mathematical sciences in the United States since 
the end of World War II. This came about as a result of the fact 
that in the critical half dozen years immediately after the end of World 
War II the Office of Naval Research was virtually the only source of 
funds available for the support of basic research in the mathematical 
sciences... mathematicians were important early participants in the era 
of sponsored research that began in 1946, a fact that contributed 
materially to the development of mathematics in the United States after 
World War II. 

Possibly most significant for pure mathematics was the considerable 
expansion of the program at the Institute for Advanced Study which 
brought many of the most promising young mathematicians, as well as 
a number of established scholars, to the Institute each year as visitors. 
ONR support played an important role in enabling the Institute, in 
the years after World War I I , to expand its influence on the growth of 
mathematics in the United States. 

Support by the Office of Naval Research for research in the more 
abstract fields of mathematics, the type usually represented at the Institute, 
had been in our original planning, but authority for such support without 
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regard to relevance to the Navy's mission had not been made explicit 
when the Mathematics Branch was established. Nevertheless, it seemed 
clear to us in the mathematics branch that the argument for increasing 
the number of well educated and experienced research mathematicians was 
a strong one. During the war, the effectiveness of mathematicians in 
handling troublesome and pressing problems had often depended not 
nearly so much on the field of their research as on their quality as 
researchers. The purest of mathematicians were among the most admired 
and sought after in seeking answers to many urgent problems though 
there were also some problems, like the malfunctioning of a rocket, 
that required specific experience in a relevant field. Moreover, there was 
considerable feeling among those of us responsible for the program that 
our concern must be with the strengthening of mathematical research in 
the United States not with fragmenting the field; and we wanted very 
much not to exclude any first class research. 

One night early in my tenure I was sitting at my desk, working late, 
when I was joined by the military officer whom the staff of the research 
division identified as the spiritual father of the Office of Naval Research, 
Capt. Robert Conrad. He was a great man and a great leader, and his 
energy and enthusiasm set the tone of ONR. He sat down, and said to 
me, after a little chit-chat: "Mina, if you want to include pure mathematics 
in your program, I'll support you in your decision." This was a great day 
for all of us, for it meant an end to the constant worry as to whether 
the Navy would see the needs of mathematics as we saw them. 

The ONR program that developed had undoubted advantages for 
mathematics, but it had its disadvantages, too. Since research assistant-
ships unlike fellowships were associated with the research of a particular 
member of the faculty, a student might be lured because of the avail-
ability of support to work in a field not really of interest to him. The 
same is true now, of course. Moreover, the fact that the one who pays 
the piper calls the tune was of concern then as now. Many, and perhaps 
most mathematicians supported by the Navy, continued to work in the 
abstract parts of mathematics that were of greatest interest to them. 
But there were others who, to quote A. W. Tucker of Pr inceton, 5 "felt an 
obligation to reach out beyond customary courses, seminars, and research, 
to make two-way contact with industrial labs and government under-
takings ." My own evaluation is that those who were lured into new 
fields by the Navy's interest were mathematicians who welcomed a reason 
for exploring new aspects of work they had been interested in for a long 
t ime. When this kind of new research commitment was accompanied by 
the offering of related courses and seminars at their universities, a lively 
campus activity was apt to come into being. Thus Solomon Lefschetz set 
up at Princeton a broadly based program in differential analysis that 
provided a home for the work of a number of vigorous young mathema-
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ticians who, in their subsequent careers, became leaders of new develop-
ments in such areas as stability theory of differential equations, mathemat-
ical theory of control processes, and dynamic programming. And the 
project in the logistics program (about which I will say more later) under 
A. W. Tucker produced many of the leading figures now operating in 
universities, industry and business in fields related to the project. As 
George Dantzig observed: 6 " . . .Tucker's interest in game theory and linear 
programming began in 1948. Since that time Tucker and his former 
students (notably David Gale and Harold W. Kuhn) have been active in 
developing and systematizing the underlying mathematical theory of 
linear inequalities. Their main efforts, like those of a group at the RAND 
C o r p o r a t i o n . . . , have been in the related field of game theory." One 
of the results of their work was a series of volumes in the Annals of 
Mathematics Studies7 reporting contributions to the theory of games and 
answers to some of the questions raised explicitly or implicitly in John 
von Neumann 's and Oskar Morgenstern's pioneering work, Theory of 
Games and Economic Behavior.'1 Moreover, because linear programming 
has become so widely important in applications in fields other than mathe-
matics, it has assumed a particular interest as mathematicians look for 
cognate fields in which to seek careers for their students who can no 
longer expect to rely on teaching mathematics. 

The use of government funds to woo scholars into research that has been 
identified as of national interest is a question on which there has been 
massive argument and disagreement in recent years. In particular 
the support of basic research at the universities by the Department of 
Defense has come under severe at tack. But in the years immediately after 
World War II , basic research at the universities relied heavily on support 
by the military. More recently a number of civilian agencies with pressing 
social missions have entered the field. And it is interesting to note that 
the National Board on Graduate Education encourages this method of 
influencing research efforts at our universities. In its discussion of the 
problems currently raised by the very large number of Ph.D's being 
awarded in the United States, the Board argues that the United States 
should not rely on the types of quota system characteristic of the 
Eastern European countries to determine the number of Ph .D. ' s to be 
awarded or the fields in which students may work, but should rely on the 
labor market to make this allocation. But then it has this to say: 9 

. . . . t he re are instances where market forces will not produce the 
research and trained manpower in the volume and with the required 
characteristics in time to meet social needs. For example, the federal 
government may embark upon a large scale program to develop 
alternative energy sources, requiring new clusterings of research talent 
and advanced training facilities. The long lag that would occur before 
market forces generated the necessary centers for research and training 
would impose heavy (and unnecessary) costs upon society. 
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In the past, purposeful efforts to combine a stimulus to research 
with training programs have been most prominent in the biomedical 
field. New areas of research—such as molecular biology, biophysics 
and steroid chemistry—have been stimulated by federal grants, which 
provided in a single package funds for fellowships, specialized research 
equipment, research supplies and renovation of facilities, as well as 
salaries for research assistants, postdoctoral researchers and for faculty. 
Such support, distributed on a competitive basis, is a powerful and 
efficient means for hastening the development of a field of investigation 
in order to create new centers of strength. This mode of support can 
be adapted to other areas. 

There are now urgent pressures to produce information, ideas, and 
experts in fields where the knowledge and the trained people pre-
requisite to a solution do not exist. New knowledge and trained people 
are urgently needed to deal with the problems of energy supply, 
conservation and distribution; the full array of difficulties that afflict 
our cities; including special problems of urban housing and transporta-
tion, the problems of racial tension and conflict, and the delivery of 
health care. Obviously, more than new knowledge and trained people 
are needed to solve these problems, but they will not be solved without 
them. Government action is needed, as it has been taken over the past 
two decades with conspicuous success. Institutions of higher education 
have reacted and adapted to national needs as expressed through the 
actions of Congress in passing federal laws and appropriating funds. 

Under these circumstances, a set of federal programs in specifically 
designated, limited areas is required which will give support to the 
research and advanced training base of the fields in question. 

It is true that the National Institutes of Health, in their Training Grant 
Program, have exploited this method of building into the university life 
of the country research and training in fields important to their mission. 
But so have other mission-oriented agencies of the country, conspicuously 
NASA. And civilian agencies like the Environmental Protection Agency 
and the Department of Transportation now have research support 
programs which, while they open up additional funding for academic 
research, are designed to produce research findings of importance to the 
mission of the agency as well as to train young men and women interested 
and able to assist in promoting the agency's purposes. 

Thus thirty years of federally supported research have served to 
develop a pattern of operations, along the lines suggested for the Navy 
by Secretary Forrestal in 1945, that expands the ability of the nation to 
call on the contributions of scientists and scholars to the advancement 
of the national purpose as defined by Congress. Even the National Science 
Foundation has developed programs to encourage scientists to consider 
ways in which their research can contribute to the solution of national 
problems. 

In the early days, operational problems that now loom large were 
present in embryo and I shall mention some of them. I have described 
my concern about the appropriateness of support for research in abstract 
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fields of mathematics. Part of our justification for this support was the 
need for additional able young mathematicians. This need is no longer 
present; and the increasing disenchantment with large military budgets 
and with military sponsorship of work at universities has tended to diminish 
the Department of Defense investment in what C O S R I M S , 1 0 some years 
ago, christened "core mathemat ics ." 

What sort of mechanism should be used to select the projects that were 
to receive support? Peer Review, in its formal sense, appeared in the first 
Mathematical Advisory Committee provided by the National Academy of 
Sciences at the request of ONR to select those of the young mathema-
ticians, usually new PH.D. ' s , who were to receive "cont rac ts" for a year 
of postdoctoral research. The rest of the program was determined after 
considerable consultation between investigators and ONR staff and was an 
at tempt to insure that mathematicians carrying on important research, 
along with their colleagues and students, would receive support. Evaluations 
were informal, and since the amount of money was small by today's 
s tandards , congressional interest was correspondingly small. 

There was no pressure for geographical distribution, though the ONR 
mathematics program made a conscious effort to seek out good mathema-
ticians in sections of the country that did not boast a leading mathematics 
depar tment when there seemed to be a good chance that a stronger 
mathematical activity would develop at their universities with modest Navy 
support . 

Another important question that is central to the whole field of govern-
ment support of university research by "mission-oriented" agencies was 
with us in the beginning and continues to trouble many a member of the 
university community, "How should a university faculty member respond 
to the lure of Navy support for research in a field that is not precisely the 
field in which he has chosen to work?" And, for those of us who were 
responsible for funding in ONR, the most important question was, "How 
can the Office of Naval Research maintain the enthusiasm of the Navy 
for providing some of its precious funds for the support of research instead 
of, as one admiral put it, ' taking three destroyers out of mothballs . ' " 

All these questions have their counterparts today, though the size of 
the problem has been greatly magnified with the passage of years. 

In the early days, we recognized that, until a National Science Foundation 
was established, ONR had a special obligation to provide for the balanced 
support and growth of mathematical research in the United States, always, 
of course, within the framework of the Navy's established policy. 

In t ime it became clear that dedication to these purposes would also 
provide the Navy with access to first class mathematical talent to aid in 
the attack on major problems. Thus , when the Defense Depar tment 
needed help in considering the D E W Line defense of the continent against 
air at tack, a number of our computer mathematicians were asked to give 
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advice. When the fleet needed a coordinated system of defense, similar 

invitations were extended to appropriate mathematicians. And when, in 

the late 1940's the staff of our office became aware that some mathematical 

results obtained by George Dantzig, who was then working for the Air 

Force, could be used by the Navy to reduce the burdensome costs of their 

logistics operations, the possibilities were pointed out to the Deputy 

Chief of Naval Operations for Logistics. His enthusiasm for the possibilities 

presented by these results was so great that he called together all those 

senior officers who had anything to do with logistics, as well as their 

civilian counterparts, to hear what we always referred to as a "presenta-

t ion" . The outcome of this meeting was the establishment in the Office 

of Naval Research of a separate Logistics Branch with a separate research 

program. This has proved to be a most successful activity of the 

Mathematics Division of ONR, both in its usefulness to the Navy, and 

in its impact on industry and the universities. Two recent Nobel Laureates 

in economics, Kenneth Arrow and Tjalling Koopmans, have contributed to 

the effort. 

The original head of this branch, Dr . Fred Rigby, now Director of 

Institutional Research at Texas Tech University, wrote to me in response 

to a recent quest ion: 1 1 

We did support the quantitative side of economics substantially, for 
the sake of its concern with the decision making processes.. . | Agricultural 
economics has been very strongly affected by the availability for 
application of the "decision mathematics" fostered by our program. 
We did indeed influence the introduction of operations research into 
business schools. The subdiscipline called management science is our 
invention, in quite a real sense. That is, we and our contract researchers 
recognized its potential, planned its early growth, and, as it turned out, 
set the dominant pattern in which it has developed. Naturally, we were 
not alone in this; RAND people in particular were also strong contribu-
tors. On the other hand, this is not just an interpretation after the fact. 
1 recall conversations in my office that were quite specifically concerned 
with recognizing and fostering the new science. (It might have been 
better for management science had it not been so heavily dominated 
by mathematics, but I'm not at all sure that could have been prevented.) 
As you know, operations research lives in other parts of the university 
than business colleges. There are departments of operations research, 
of course, but this topic is also a major curriculum component of both 
industrial engineering and computer science. Nearly all of the operations 
research content of these disciplines derives from research areas that we 
supported, often as pioneers. Our journal, the Naval Research Logistics 
Quarterly, is a highly respected and extensively used reference for source 
materials in these fields. We supported research on game theory and 
such related topics as bargaining, . . .Game models and the like have 
penetrated political science curricula quite notably in recent years. On 
the empirical side, gaming is a rather widely used instructional technique, 
mostly in business administration fields. Thus far I've been writing 
about the optimization theory aspect of the ONR Logistics Program, 
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and 1 may as well wrap that up by noting two opposite trends affecting 
mathematics in universities. One is for the mathematical aspects of 
optimization to find homes in the application disciplines and to be 
neglected, or at least little respected, in mathematics departments. 
The other and more recent is for mathematics departments to establish 
and operate subprograms specifically designed to service the needs of 
students in the behavioral science areas. Never mind the social and 
cultural whys and wherefores of these trends. Neither would have been 
what it was and/or is without the subject matter results of logistics 
research. 

Research and applications in Logistics continue at a significant level 
even to the present. 

Another aspect of the early work of the Mathematics Branch that 
not only made the Logistics program possible but touched in the broadest 
way the operations of the whole Navy as well as that of our whole society 
was the work in computers. When I first went to Washington in 1946, 
there were some projects dealing with analog computers that were being 
supported by the ONR but little if any attention had been given to 
automatic digital computers. John Curtiss had just gone to the National 
Bureau of Standards, and was eager to join forces, ONR contributing the 
money and participating in policy guidance, and the Bureau of Standards 
playing an active role in pressing forward work in the development of 
digital computers. C. B. Tompkins , who was then associated with 
Engineering Research Associates (which later became part of Sperry-Rand) 
was also full of ideas about ways in which ONR should participate in the 
emerging field. Though, with the passage of years, we did contribute in an 
important way toward the building of machines, our chief emphasis, 
at least in our original planning, was on the development of the mathemat-
ical results that would be needed if the machines, when they were 
developed, were to be used properly. Thus , the first ONR project I find 
reported at the Institute for Advanced Study is the von Neumann - Gold-
stine project on Methods for High Speed Computing; and a project at 
Columbia, of which F . J. Murray was principal investigator, was called 
Numerical Methods and Error Theory. There were many others on 
Numerical Analysis in special fields of application. In 1947 the Institute 
for Numerical Analysis was established at UCLA under the auspices 
of the Bureau of Standards and with ONR financing. (Later, the Air 
Force also participated). The Institute attracted to its staff, for longer or 
shorter stays, distinguished mathematicians and mathematical physicists 
from the United States and Europe. D. H. Lehmer, who was Director of 
the Institute for a time commented in an interview at the Smithsonian 
Institution in October, 1969: 

. . .we were apt to do problems in support of the group that we had 
there, and we had a very fancy group of people: Lipman Bers, for 
instance, and the really good analysts and algebraists of that time came 
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through the INA and stayed for a month or a whole year in some cases. 
So, the first priorities went to supporting their research and that's 

why a good deal of pure mathematics on experiments in methods and 
so on, partial differential equations and linear equations, solving systems 
and that sort of thing, was worked out there. 1 have a big file of 
things that were produced at the Institute during my tenure. . . the 
Institute was not really in business to supply service to government 
agencies. 

When Professor Lehmer was asked how that happened, since the 
Institute was, after all, a part of the National Bureau of Standards , he 
replied in par t : 

Oh, yes, but the Bureau didn't have much money in i t . . .it was a new 
idea for the Bureau, really. Mina Rees of the ONR in those days was 
very influential in promoting this idea of getting mathematical research 
done at a reasonable price. . . the Bureau of Standards had no money 
tied up in the thing, really...it largely came from the Air Force and 
the Navy.. .and they.. .wanted this kind of work done. 

We trained a lot of very fine people that way, too, and when the axe 
finally fell on the Institute from Washington, the crowd of people that 
deserted the ship. . .permeated not only Southern California, but the 
whole United States, and they spread the word about what could be 
done, how to do it, and so in that way, perhaps, to fire everybody was 
a good way to disseminate information. We all went somewhere else and 
tried to do likewise. It was a little rough on the lot of us, because the 
laboratories we went to or the campuses we returned to were not 
supplied with the hardware we needed.. . and it took another ten years 
for that to show up at every university. 

In fact, there was substantial mathematical work going on at the Bureau 
of Standards in Washington as well as in California. Washington, too, had 
notable visitors who came to work there, including some distinguished 
Europeans. Jack and Olga Taussky Todd spent a number of years on the 
Bureau staff and greatly influenced the program. 

Though the Institute for Numerical Analysis was one of our principal 
ventures in the computer field, a substantial program for component and 
computer development did emerge over the years. The two computers to 
which we gave support that had the greatest influence on the subsequent 
developments in the field were the computer at the Institute for Advanced 
Study, known well to many mathematicians because of the central role in 
its history played by John von Neumann and Herman Goldstine, and the 
Whirlwind Computer at M I T which provided Jay Forrester with his first 
claim to fame. 

As F . J. Weyl (my successor and later the Chief Scientist of ONR) stated 
in an internal paper on the Role of ONR in the Establishment of the 
American Computer Technology (1 March 1957): 

The decisive aspects of stored program computer logic, high-speed par-
allel electrostatic and magnetic core memories, the interaction of high-
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speed small memories with slower much more capacious ones in the same 
computer, and many important simplifications in programming and cod-
ing were first realized on one or the other of these machines. 

The Whirlwind, originally conceived as an element in an advanced flight 
trainer, after many changes and adaptations to the state of the art , was de-
veloped as a general purpose computer of unusual design. Within months 
after its completion it became clear that this computer was particularly 
well suited to serve as the data processing component in a prototype in-
tegrated defense system, then under development at MIT . The experience 
gathered on Whirlwind during the second half of the fifties, I am told by 
Dr. Weyl, laid the groundwork for the development of the computerized air 
traffic control systems, the automated reservations facilities, and the com-
puter managed learning systems of our day. 

Another major field of applications of mathematics that owes much to the 
pioneering support of ONR is mathematical statistics. In the next few par-
agraphs I shall paraphrase a report about the contents and influence of that 
program provided to me by Herbert Solomon, 1 2 now a distinguished mem-
ber of the mathematical statistics faculty at Stanford who served for some 
years as head of the mathematical statistics branch at ONR. 

At first the principal feature of the ONR work was a basic research pro-
gram in statistics and probability at those universities which, in the late 
1940's either had such programs or were developing them. As in math-
ematics, the people who headed these university programs were acknowl-
edged leaders in the field, or, in some instances, somewhat junior people 
who have since assumed positions of leadership. A number of them, like 
their colleagues in mathematics, were not too comfortable about accepting 
Navy money to do their own thing. But, with the passage of t ime, they, too, 
came to seek it eagerly; and with support from ONR, depar tments of mathe-
matical statistics flourished on university campuses, and research activity 
in the field prospered in the United States. 

As we look back we see that many of the research results produced in the 
ONR programs were of importance both to science and, in applications, to 
the Department of Defense and to other federal agencies as well as to in-
dustry. Abraham Wald's work in sequential analysis and decision theory, 
well launched during World War II, was carried forward under ONR spon-
sorship, Feller produced a notable exposition .of probabilistic methods in 
his two volume t rea t i se , 1 3 and a number of theoretical examinations into 
applied problems such as weather modification, models in medicine, design 
of experiments and data analysis were carried on separately by Jerzy Neyman 
and S. S. Wilks. Junior colleagues and students of the investigators sup-
ported in the early post-war years are now prominent statisticians, and their 
students, in turn, made possible the staffing of the 50 or more statistics 
departments that were begun after 1950. Others hold posts in industry. 
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Mathematical statistics is still a field in which there is no over-supply of 
professionals. 

Through the late 1950's ONR helped keep statistics a viable subject in a 
number of universities, when there was not much support for it elsewhere. 
With the advent of Sputnik in 1958, more interest was shown in scientific 
research in general and a number of agencies such as Justice and Trans-
portation began programs. The NIH now has a large program in statistical 
training and research which supports students of biostatistics and provides 
funds for research. 

An important part of the statistics program which continues to this day 
derives from steps taken just prior to and at the beginning of the Korean 
War. About 1949 the Joint Services Program in Quality Control (now Quality 
Control and Reliability) was established. The focus here was to continue 
work done during World War II on quality control and acceptance sampling 
and to initiate new efforts to meet new reliability problems arising in in-
spection and quality measurement. A number of Depar tment of Defense 
Inspection Manuals still in use were developed from this research. 

I have not tried to describe the extent of the ONR program in pure mathe-
matics since the influence of the Navy was felt primarily in the availability 
of increased student and research support rather than in the fields chosen 
for research. In the fifties a number of very able mathematicians did par-
ticipate in highly classified projects during the summer and, to a certain 
extent, research interests generated in these summer projects did find their 
way into major mathematical efforts. But, on the whole, mathematical re-
search moved forward propelled by its own inner forces; and it was natural 
that the National Science Foundation should gradually take over the major 
part of the support of this research after the Foundation was established. 

ONR and its counterparts in the other military services continue to play 
the role envisioned by Secretary Forrestal for a military agency supporting 
research. A congressional decision in 1969 strictly limited the types of re-
search that might be supported by the military services in fiscal 1970, but 
the range of permissible research support was broadened for the following 
years because the Depar tment of Defense found the restriction so unde-
sirable. The present controlling legislation, included in the military authori-
zation act for 1971, states: M 

Sec. 204. None of the funds authorized to be appropriated to the De-
partment of Defense by this or any other Act may be used to finance any 
research project or study unless such project or study has, in the opinion 
of the Secretary of Defense, a potential relationship to a military function 
or operation. 

Sec. 205. It is the sense of the Congress that— 
(1) an increase in Government support of basic scientific research is 

necessary to preserve and strengthen the sound technological base essen-
tial both to protection of the national security and the solution of unmet 
domestic needs: and 
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(2) a large share of such support should be provided hereafter through 
the National Science Foundation. 

Thus , in the years immediately ahead, it is to be expected that the primary 

support tor core mathematics will be from the National Science Foundation; 

but a variety of other sources outside the Department of Defense will be 

available to those mathmaticians who are interested in exploring the ap-

plications of mathematics in the large number of fields of social concern 

which have now or soon will have programs to support research that ad-

vances their mission. 
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THE HISTORY OF COMPUTING IN THE 
UNITED STATES 

R. W. Hamming 

1. Introduction. I began doing large scale digital computing early in 
1945, and hence have lived through most of what is called the Computer 
Revolution. You might suppose that I would be ideally suited to write 
about it. But the book by Η. H. Goldstine, The Computer from Pascal to 
von Neumann,1 shows me that different people can see more or less the 
same events in rather different ways. 2 And Goldstine says that he kept 
voluminous records while I have not! Indeed, it is clearly doubtful that 
anyone who lived through the Computer Revolution is well suited to write 
about it because personal experiences tend to destroy "objectivity". A 
talent for history, as well as training in history, are also necessary. But 
histories of the Computer Revolution are wanted now; we who have lived 
through it must do what we can until more competent historians take up 
the task. 

Not too long ago history was mainly a description of Kings and Battles 
and Empires. Today we seem to prefer histories that are more culturally 
and intellectually oriented, that discuss more about how the common man 
lived and thought and hoped, and less about the Kings and their Doings. 
Similarly, scientific history has been almost always the history of "firsts"— 
who did what first, when he did it, and possibly how he did it—with scant 
attention to those who might have been slightly later, let alone when the 
widespread dissemination of the knowledge occurred. 

There is a positive value to emphasizing the individual in history. Plu-
tarch in his Lives3 is clearly more interested in giving the history of the in-
dividual and his greatness, or his moral weaknesses, than he is in giving 
mere dates and places. His aim seems to be to inspire others to reach for 
greatness. The usual scientific history also emphasizes the individual, and 
hopefully encourages others to make the heroic efforts that are apparently 
necessary to advance science significantly. I am not opposed to this ten-
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dency in the history of a field when it is written for the experts in the field, 
but I presume that outsiders, including mathematicians, prefer a more cul-
turally oriented computer history for the same reasons, whatever they may 
be, that makes cultural and intellectual history sought after these days. 

The history of dates and individuals has the great advantage of consis-
tency. Various historians will come up with approximately the same dates. 
But this consistency can be deceptive. I have attended at least two com-
puter dedication ceremonies where the following week the computer was 
extensively dismantled. What , then, does the dedication date mean? At 
first glance it seems to mean the computer went into useful production, 
but clearly this can be false. The consistency and reliability of dates does 
not reflect what we want to know about the history of computing and of 
individual machines. 

By contrast, the personal memory kind of history is very inconsistent, 
and various participants come up with rather varied descriptions of what 
happened. But such histories may, nevertheless, be closer to the " t r u t h " 
(whatever that may be) when one is writing the history of ideas. 

In spite of these difficulties, and others, I shall emphasize more than 
usual the general availability of computing to the scientific populace at 
large, as well as the growth of the central ideas of the field. I will ignore 
the accounting uses of machines since it falls outside your interests, and in 
practice it gave rise to very few significant ideas. This is not to say that the 
accounting use of machines was not economically important . 

For most of the past 25 years approximately 70% of those installed have 
been IBM machines, and this means tha t IBM will dominate the discus-
sion. This does not imply either approval or disapproval of IBM computers 
or the corporate policy; I am merely trying to measure the availability of 
computing to the masses of scientists and engineers. All too often a "first" 
was built as a single copy, and was available to a limited circle of people. 

The history of ideas is very difficult, and rapidly becomes a matter of 
opinion. You are all, I am sure, familiar with The History of the Calcu-
lus4. The Greeks used circumscribed and inscribed polygons to estimate 
the area of a circle. Are we to assume they understood the upper and lower 
Riemann sums? Isaac Barrow, who was Newton's teacher at Cambridge, 
included in his lectures a proof of the fundamental theorem of the Cal-
culus 5 . Fermat and others were aware of the method of tangents. Yet we 
customarily attribute the discovery of the Calculus to Newton and Leibniz. 
Evidently there is more to "unders tanding" than mere awareness of possi-
bilities. Indeed, most mathematicians have had the experience of knowing 
a theorem for many years and then suddenly realizing what the theorem is 
all about! 

The fact that the cultural history, especially of ideas, is far harder to 
write than is the conventional history of "firsts", and is necessarily less pre-
cise in its statements, does not mean that we should not try to meet what 
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is clearly desired by outsiders of the field. It is usually better to approxi-
mately solve the right problem than it is to solve the wrong problem ele-
gantly and exactly. 

How, then, can I proceed? Some searching of relevant documents is es-
sential to correct errors and supply definite dates. But the topic of the 
availability of computing is, as I have said, a matter of judgment . My per-
sonal experience in managing both large analog and digital installations 
has convinced me that whether the machine is widely available or limited 
to a closed circle of friends depends very much on how hard the person in 
charge meets the needs of outsiders on their own grounds, how well he re-
moves the "mystique of the machine" , how well he "marke t s " the machine 
and its capabilities. Again, my experience is that outsiders are more likely 
to use the machine on important problems than is the intimate, closed 
circle of friends. I am reduced, therefore, to my impressions of the people 
I saw around the machines at various places, the people I have met over 
the years and which machines they used, and the papers tn the literature 
that I saw which referred to machines. Clearly this is an impressionistic 
and personal history I am giving. Let me cease the apologies now, and get 
to the main topic, which I will divide up into hardware (the actual ma-
chines), software (the programs that are general purpose and make the 
machine easier to use), and the uses of computers in the general area of 
mathematics. 

2. Hardware . Since I am giving the history of computing in the United 
States, I must skip over much of what happened elsewhere and begin with 
a difference engine built by George Scheutz (inspired by the difference en-
gine that Babbage did not complete). It was sold in 1856 for $5000 to a 
wealthy American who donated it to the Dudley Observatory in Albany, 
New York, where I am told it was in constant use for many years. It had 
four differences and 14 decimal place accuracy—no small computing 
capacity! 

In 1876, George Bernard Grant exhibited at the Philadelphia Centennial 
another difference engine of which he ultimately sold 125 copies. Again a 
lot of computing capacity available to many people. 

In 1886, William S. Burroughs started the American Arithmometer 
Company which developed adding and listing machines. 

In 1887, Dorr E. Felt developed the famous Comptometer which was 
widely used for additions and subtractions, and by suitable use could, of 
course, be used to multiply. Division must have been a bit of an arcane 
art to most of the users, but is, of course, possible. 

Herman Hollerith noticed tha t the 1880 Census of the United States took 
7j years to process, and concluded that the 1890 Census would not be 
completed before the 1900 Census was taken unless something significant 
was done to speed up things. He was thus led to the development of elec-
tromechanical computing machines. By 1887 he demonstrated in field 
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trials the efficiency and practicability of his machines. And they did handle 
the 1890 Census as planned. In 1896 he formed his own Tabulat ing Ma-
chine Corporation, which in 1911 became CTR, and finally in 1924 be-
came the IBM Corporation. 

In 1911, James Powers, who worked for some time with Hollerith, 
formed the Powers Accounting Machine Company which by 1955 became 
part of Sperry Rand. 

The history of the harmonic analyzer is long. A. A. Michelson developed 
a very large one at the University of Chicago. When he found that the par-
tial sums of the Fourier series had a peculiar overshoot he set the stage for 
the explanation 6 of the Gibbs phenomenon (1899) of Fourier series. (It was 
known earlier, but apparently was lost in the literature). 

In 1930, Vannevar Bush at M I T developed the first practical differential 
analyzer. It was a flat bed of shafts and gears interconnected to correspond 
to the terms in the differential equations being solved. The crucial step was 
the power amplification device he used, a string running around a spinning 
shaft. Pulling gently on one end tightened the string around the shaft and 
this supplied the power to do the work. Thus power was supplied around 
the closed loops of operations that the machine was doing. It was, clearly, 
a mechanical machine, but it was very valuable in getting specific solutions 
to specific differential equations. 

These are but a few examples of early pioneers in computing. Evidently 
Americans were very active in the computer field. They were showing the 
famous "Yankee ingenuity", tinkering here, adapting there, making a 
constant stream of improvements on what was available. Without going into 
details let me observe that the desk calculator gradually developed from an 
automatic add and substract with hand control for multiplication and di-
vision, to a fully electric powered, four function machine which was widely 
available by 1937. Some even incorporated square root. These were all 
essentially mechanical machines, though they used electric motors to drive 
them. And all were, basically, decimal machines. 

In 1935, IBM began manufacturing the IBM 601 multiplying punch 
which had an effective speed of about one operation per second. In total 
they manufactured over 1500 of these machines, and since they were rented 
and not sold you can be sure that they were in fairly regular use. The 601 
was essentially a relay machine, but in places it used rotating cams to close 
contacts. 

George Stibitz in 1940 exhibited at the Dar tmouth , New Hampshire 
meeting of the American Mathematical Society a remote console connected 
to the Bell Laboratories Complex Number Computer in New York City. It 
was a relay machine that did arithmetic on complex numbers . Stibitz started 
the development of increasingly powerful relay computers until by the 
Model 5 it was a general purpose computer. The Model 6 had a very ex-
tensive subroutine system. 
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In 1939, Howard Aiken of Harvard, in cooperation with IBM, began 
what was in 1944 to be the Mark 1 computer. It was a combined relay and 
rotating cam machine, with fairly fast operations for an electromechanical 
machine. He went on to develop a number of improved machines. 

The appearance in 1944 of the famous ENIAC with its 18,000 vacuum 
tubes and all electronic insides is often taken as the start of the Computer 
Revolution. Certainly it could compute much faster (about 5000 additions 
per second) than any electromechanical machine. But when one considers 
the number of electromechanical machines in operation at tha t t ime, it was 
not a great increase in the computing capacity of the country. 

The ENIAC was conceived, designed, and built by Mauchly and Eckert 
at the Moore School of the University of Pennsylvania with the aid of 
Government money, in this case the Ballistics Research Laboratory at 
Aberdeen, Md. where trajectory calculations were needed in large volume. 
In the summer of 1946 Mauchly and Eckert held a summer conference to 
tell others what they had done and what they thought could be done. As is 
so often true, they had , even before the completion of one machine, the idea 
of a significantly better one, the EDVAC. Many people got their first real 
awareness of what computing machines were all about from this summer 
conference. The birth of modern computing dates from around this t ime. 

Von Neumann wrote a report under contract with them which is appar-
ently the first public description of internal programming of a computer— 
there is little use in building a fast machine that must constantly wait on 
slow humans for further instructions, or which like the early ENIAC was rather 
rigidly bound to a fixed routine of computation with little chance to alter 
what is being done. The father of the idea of internal programming is open 
to debate. Von Neumann went on to propose a general purpose computer 
for the Institute for Advanced Study, called the IAS machine. Their efforts 
and reports inspired many others to build machines, and it is a curious fact 
that many of the copies were built and running long before the parent was. 

At this point in h is tory , 7 , 8 it was mainly individual Universities, often 
supported by Government money, who built one or two of a kind machines, 
and kept the field in a ferment of activity. 

The Mauchly-Eckert effort finally produced the UNIVAC, the first com-
mercial computer and installed it at the Census Bureau in 1951. 

Meanwhile IBM had been slowly developing its old 601 multiplying punch 
into the 602, the 602A, the 603, and finally the 604 which was first delivered 
in 1948. The 604 was a general purpose electronic calculator in a restricted 
sense, being essentially card programmed with an extensive plug board wiring 
to suit the particular problem. More than 4000 were built. 

The IBM Card Programmed Calculator (the CPC) was inspired by de-
mands from Northrup Aviation that the IBM multiplying punch and tabu-
lator be interconnected. When others heard about this they raised such a 
hue and cry that IBM in 1948-1949 met the demand by combining parts of 
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four machines into one CPC. At one t ime there were some 200 CPC's in 
operation. 

During the war Watson, Sr. of IBM had promised to build a Defense 
Calculator, which was to be all electronic, but after the war this was 
changed into the IBM 701 computer. There were 18, 19, or 20 such ma-
chines built, depending on which source you use. Although the UNIVAC 
was first in the field of commercial use, and had about 7 installed when the 
first 701s became available, IBM's superior selling ability soon eclipsed the 
UNIVAC and other competitors. IBM next developed a magnetic drum 650 
computer which was the real work horse of industry during the 1950's, 
there being over 1000 installed. 

IBM continued to dominate the market of computers, developing the 
704 (January 1956), the 709 (1958), and the 7090 (1959) which was a t ran-
sistorized version of the 709. Others , of course were making similar, some-
times better, sometimes worse, machines but none managed to challenge 
IBM in machines installed, and hence in computing power in the field. 
IBM also, beginning with a series of seminars in the 1940's, gradually 
dominated the field of applications. 

I have not mentioned the fastest machines of their t ime, the IBM NORC 
and Stretch, the REM-RAND LARC, the Control Da ta 6600 and 7600, 
and the Cray I machine, let alone the sea of Maniacs, Whirlwind, Seac, 
Johniac, etc. These machines were often pioneers in some phase of con-
struction of hardware, but in the history of use, since they were either a 
single machine, or at most a few copies, they played minor roles. 

What were some of the ideas behind the changing computers? The early 
IAS design essentially had every number pass through the accumulator of 
the machine. Index registers, which are simple adders, were soon added to 
machines (after first simulating them in software) and they took a large 
burden off the accumulator bottle neck. Further parallelism of processing 
made computers significantly faster. The idea of indirect addressing, the 
address given contains the address of where to find the next item (number 
or instruction), is another idea that has proven useful. 

There has been a gradual t rend towards the situation where the computer 
is completely self-aware; a computer can now usually find out what it is 
doing, and what its current state is. This was not true in the early days. 
Another trend has been away from direct reference to specific parts of the 
machine; the machine now can assign its own choice of tape units, storage 
places, etc. The name "virtual s torage" typifies this t rend away from the 
specific towards the general. And we can expect this to go on in the future. 

3 . Software. There is a tendency for historians to concentrate on the 
hardware of computers . In my opinion this is the same mistake that is made 
by those who believe a book is its physical realization (hardware) rather 
than the ideas expressed therein. We all agree on the importance of the dis-
coveries of paper making and printing; they are vital to the wide dissemin-
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ation of learning—without them where would we be?—but I have not no-
ticed that the contents of the earlier hand written books were that much 
worse than the average book produced today. The importance of these in-
ventions is that they greatly reduced the cost of books, and the importance 
of the computer in the long run is that it greatly reduced the costs of symbol 
manipulat ion. The computer itself is a very interesting technological device 
requiring a great deal of careful engineering—but so is book production. I 
do not feel that to an audience of mathematicians I need to belabor this 
point as much as when writing for the average audience. 

While not all the main ideas in the field of software originated in America, 
we have dominated the field. The reasons are not hard to find. As one 
European remarked to me, "When you have a large high speed storage 
device available, it is not hard to think about the corresponding software." 
That , and the fact that we have had so many more machines, are probably 
the main reasons for our leadership, on the average, in this area. 

Computer Science began when it was clearly recognized that computers 
are symbol manipulating machines, not just number crunchers. But like 
any concept of broad general application it is difficult to pinpoint the dis-
covery and general understanding of this idea since there were many pre-
cursors. As earlier remarked, the history of the Calculus is full of early, in-
complete starts. 

Similarly, in Physics we do not feel tha t Max Planck at first understood 
the quantum mechanics, nor did Einstein when he discovered the photo-
electric effect. While opinions differ, there is some consensus among phys-
icists that "unders tanding" occurred when Max Born observed that it is 
the square of the absolute value of the wave (or state) function that assigns 
the probabilities which can be identified with measurements. Thus the 
whole formal structure of quan tum mechanics that had been erected was 
made relatively clear. 

Returning to computing, when did the concept of the computer as a 
symbol manipulating device become clear? Did Turing in his famous paper 
of 1936 understand this clearly? Did Post? Do the famous reports of Burks, 
Goldstine, and von Neumann ' reveal that they understood? 

For myself I learned it slowly and painfully from Appendix D of the book 
by Wilkes, Wheeler and Gi l l 1 0 , published in 1951. Did they understand 
clearly what they buried in Appendix D, where they showed how an inter-
preter could be built for a computer to translate from an almost arbitrary 
language into machine language? I doubt it. In each case I feel they are 
like the anticipators of the Calculus, they understood partly, but not clearly 
as we now do. By 1954 it was a clear concept to many people— I was not 
alone in consciously designing and building a higher level language to be 
translated into machine language (for the IBM 650). I had earlier done 
much the same, but without the same clear understanding, on the CPC, by 
wiring plug board panels. 
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I suggest that this central idea, that the computer is an abstract symbol 
manipulator, not just a number processor, became clear to many of us dur-
ing the years 1952-1954. I know of no one who can claim exclusive credit— 
it was in the air as was the Calculus in its time— and we mutually taught 
each other. 

To explain a bit of the jargon of the field, an interpreter translates and 
executes the words of the source language into machine language each time 
it comes to them; a compiler translates once, and then the translation is 
later used to drive the computer. The first is clearly inefficient of machine 
time, but the second leaves many problems for the user when the errors, 
bugs, etc. , arise and he is in the translated language. From our point of view 
both translators and interpreters are much the same— they both allow the 
user to write his program in a suitable language and to leave the details of 
the translation to the machine. Of course the early machines were used to 
translate from binary to decimal and back, but as in the Calculus case, I 
am reserving the dating of the idea until it was quite clear that people by 
their actions understood that the computer was essentially a symbol manip-
ulating machine. 

Once we had this fundamental understanding of what the computer was, 
the rest of the development followed easily. What is today often called 
"machine language" is in fact far removed from it. It is typically a one-
word-to-one-word translation much of the t ime, but it is far from the ab-
solute binary programming we first labored through. Without it we would 
be bound to the machine like slaves; with the concept we are freed from a 
sea of details of programming. 

Returning to the Calculus analogy, once Newton and Leibniz established 
the concepts clearly, it was inevitable that the vast plain now called "Ad-
vanced Calculus" would be explored. Similarly, once we grasped the idea 
of languages and the symbol manipulating aspect of computers , it was in-
evitable that the monitors, various programming languages, etc. , that con-
stitute the modern software of the computer would be developed. The details 
were not certain, but the general direction was clearly set. 

In the Calculus thoughtful people in time began to wonder about the 
soundness of the practice in the field, and to create a body of theory to ex-
plain the formal manipulations of the Calculus. In computing we are be-
ginning to create theories to explain and elucidate many of the formal, 
practical things we have been doing. And we can hope that in time there 
will be a similar benefit coming back from the theory to the practice so 
that we may indeed understand what we are now so frantically doing just to 
keep up with the pressure for the initial exploration of the domain. In my 
opinion we are making definite progress along these lines. 

The cost of initially developing the software for a machine often greatly 
exceeds the design cost of the machine itself. But the duplication of software 
is much easier than the duplication of a machine! Software costs are still 
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too high, but are not unreasonably expensive considering their value. We 
expect to reduce their costs through the application of sound engineering 
practices adapted to ideas as contrasted with things. The growth of software 
for a machine has been from a few thousand machine words to over a 
million, and is headed even higher. The software is what makes computers 
relatively easy to use. As a friend of mine once remarked, if you want to go 
fishing and are offered a rowboat or a battleship, take the rowboat unless 
the battleship is fully manned. Thus most of us judge a computer first by 
its software, and if that looks good we then look at the machine behind the 
software. We have been burned too often doing it the other way. 

4. The Use of Computers in Mathematics. We now come to the use of 
computers in mathematics. I shall ignore other applications since they are 
probably generally familiar to you and are of less interest. 

Early in the history of computing the great von Neumann preached that 
the many numerical solutions of particular cases we could compute would 
shed a great deal of light on many parts of mathematics, and would prove 
to be a significant stimulus to the whole of mathematics. As a very minor 
disciple I confess that I preached much the same message. I had known 
that L. E. Dickson had for years kept one or two desk calculators running 
to check old conjectures for counterexamples and to provide tables for new 
conjectures in Number Theory. I was also well aware that practical math-
ematics, with its emphasis on definite numbers , had in the past greatly 
stimulated many branches of mathematics. 

But we found that most mathematicians simply ignored computers , if 
they did not deliberately flee from them! From the present position I think 
that they were more right than I was—computers have had a great deal less 
influence than we had hoped. Even the fundamental idea of an algorithm, 
which is so central an idea in computing, has not penetrated very far into 
the general mathematics curriculum (from computing; logic has had some 
effect). 

Let me be specific. Early in the history of modern computing we tried 
proving theorems with computers—a branch of Computer Science called 
Artificial Intelligence. There were some astounding early successes. The 
famous routine for proving theorems in high school geometry produced the 
proof that given an isosceles triangle the base angles are equal . It used the 
elegant proof of comparing the triangle to itself flopped over, and concluded 
that corresponding angles are equal. The proof was not known to the men 
who wrote the program, but was in the mathematical literature. Most 
mathematicians agree that the proof is elegant. We even had races to see 
how fast a machine could prove the first few hundred theorems of Principia 
Mathematica of Whitehead and Russell. We started gaily down the path 
of a "general theorem prover" which supposedly would require only the de-
tails of a particular field to prove theorems in that field. We have yet to 
prove a significant new theorem using the Artificial Intelligence approach. 
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We have had minor successes to be sure, but our failures are too great to 
ignore. Work in this area is carried on by a few brave souls, but compared 
to the great enthusiasm we once had it is marginal . Chess playing routines 
are getting better, but apparently because both the game of chess and pro-
gramming are better understood, ra ther than from great progress made 
after the initial wave of discoveries in the field of general game playing. 

Number Theory was one of the earliest fields of mathematics to be attacked 
via the new big computers. A lot of machine t ime has been used on Number 
Theory problems, but the results are, in my opinion, not as much as we 
hoped, though certainly better than in theorem proving. Perhaps it was be-
cause their goals were more modest that their successes were the greater. 

To get down to details I will make a definition that a theorem must in-
volve an infinite number of cases 1 1 . This definition is, of course, arbitrary, 
but it has the merit tha t it agrees with common experience. For example, 
the statement that the two thousandth digit of pi is a certain digit is not a 
theorem, nor are statements about isolated Mersenne numbers . No patient 
enumeration of a finite number of cases, regardless of the amount of com-
puting, is by this definition to be called a theorem. There must be a po-
tentially infinite number of cases. 

In proving theorems in Number Theory we must bridge the gap between 
the finite capacity of the machine and the infinite demand of the theorem. 
One technique, with many variants, is to show that as η gets larger and 
larger, runs of integers with a certain property get longer and longer and 
that ultimately the runs completely overlap and leave no gaps . Finding 
where this occurs, and examining all the cases up to tha t point is the work 
of the machine. It is the cleverness of the mathematician tha t proves the 
theorem. Techniques like this, and others, have been used a number of 
times, but each problem requires careful thought before approaching the 
machine. It is not as yet a mechanical process. 

Have the results found in Number Theory from all this computing greatly 
changed the field or produced any great new insights beyond what one 
would expect from a giant computer? It is hard to get a clear reading from 
those who are deeply involved in the field. My outside opinion, after asking 
a lot of pointed questions and discounting enthusiasm, leaves me with the 
feeling tha t computers have added a lot of details, opened a few minor fields, 
but have as yet made no major contributions to Number Theory. Computers 
have been merely super desk calculators. 

Another general area of mathematics that seems appropriate for com-
puters is Group Theory and related topics. Again, with some differences, 
the machine has helped find many new, minor results, proved some re-
sults, and disproved some conjectures, stimulated much thought and re-
search into new questions, but has not done as much as we had hoped. 

We have also invaded the area of formal mathematics with programs like 
ALTRAN which do formal symbol manipulation as directed by the user. 



The History of Computing in the United States 127 

The software assigns the storage, keeps track of where things are, does the 
brutal labor of manipulations, keeps the coefficients in rational form to 
avoid roundoffs, etc. And this is no small thing when you face a sea of 
manipulation. But again, originality seems to elude us, we have found 
pitifully little that is genuinely new. We can, of course, check algebraic 
conjectures in more cases than by hand . But in practice the storage de-
mands , and t ime needed, rapidly approach infinity. This has caused some 
research on how to carry out certain algorithms without having things grow 
astronomically, but the results were mainly human generated, not machine 
produced. The machine does not find how to economize in significant ways. 

I have confessed to you that in four of the many fields of mathematics 
where we have tried to use computers to do mathematics I am disappointed. 
You can mark it down partly to unjustified hopes that we had in the early 
days. According to Turing machine theory a simple universal machine can 
do anything any machine can do. We thought that because the theorem is 
t rue we could do all things and that we were some kind of demi-gods. Our 
failures suggest that we should not ignore the following remark: 

Just because a human cannot program a computer to think, 
does not mean that a computer cannot think. 

It is t ime to consider that our failures to use the machine to create signif-
icant mathematics may not be the fault of the machine, it may be our own 
limitations. Perhaps there are thoughts that we cannot think! Certainly, 
there are sounds we cannot hear, odors we cannot smell, flavors we cannot 
taste—why not the possibility that , being what we are, there are thoughts 
we cannot think? This is the kind of conjecture that one is driven to when 
the direct proof of a theorem eludes us—we then conjecture that the 
theorem is false and try the other side of the argument for awile. 

Of all the fields of mathematics where computers have been used probably 
they have done most for differential equations, especially partial differential 
equations, where from computed solutions people have been led to new in-
sights. A little of the von Neumann belief has been at last realized. 

Well, what can you expect from computers in the near future? Cheaper, 
faster, larger, more widely available computing power, more awareness of 
the central role of algorithms both in Computer Science and in Mathematics . 
But I doubt that in the next 25 years we will be doing significant mathe-
matics in a routine fashion on computers . Your jobs, in that sense, are safe! 
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THE BOMB, SPUTNIK, COMPUTERS, AND EUROPEAN 
MATHEMATICIANS 

Peter D. Lax 

In the letter inviting me to participate in this program, I was asked to 
give a one hour talk "on the general subject of the development of math-
ematics in the U.S. during the period of World War II through the rosy 
days of the sixties. A more specific topic, the contribution of European 
refugee mathematicians in America, 1940-1960". I interpret this as an as-
signment to speak on the remarkable changes that took place in mathe-
matics in America during these two eventful decades. The items listed in 
the title are, in my opinion, the principal tangible causes of these changes. 
Of course the changes would not have occurred without generous and far-
sighted federal financing, described in detail in another talk of this program. 

It is most appropriate in this bicentennial year to express, on behalf of 
all refugees, heartfelt thanks to the American people for their great gener-
osity in giving us, during hard times, homes, jobs, opportunity for doing 
work, and most of all for regarding us not as foreigners but as genuine, 
although somewhat peculiar, Americans. More thanks than words can ex-
press are due to Veblen for his untiring help to so many. 

To see what changes took place we have to compare American mathe-
matics before the arrival of refugees from Nazism with the situation after 
the war. Here is a list, necessarily partial , of American mathematicians who 
were active during the twenties and thirties; it includes some refugees from 
an earlier tyranny. It is convenient to arrange them according to their fields 
of interest, except for G. D . Birkhoff and Norbert Wiener, who were uni-
versal mathematicians and defy a narrow classification: 

Analysis: Evans, Douglas, Hille, Levinson, Morrey, Morse, Ritt, Stone, 
Tamarkin . 

Algebra: Albert, G. Birkhoff, Dickson, McLane. 
Applied Mathematics: Fry, Stoker. 

129 



130 Peter D. Lax 

Geometry: Eisenhardt , Veblen. 
Logic: Church, Kleene, Post, Rosser. 
Number theory: Blichfeldt. 
Probability: Doob, Uspensky. 
Topology: Alexander, Lefschetz, Moore, Steenrod, Whitney. 

The quality of the list is extremely impressive, the quantity a little small 
for a country of the size of the United States. Indeed, there were only three 
places with the requisite critical mass to sustain a really intense mathematical 
life—the Harvard-MIT complex in Cambridge, the University and the 
Institute for Advanced Study combination at Princeton, and the University 
of Chicago. This is not to say tha t all else was desert; Tamarkin at Brown 
exerted an immense influence; R. L. Moore had his unique school in Texas; 
the universities of Wisconsin and Michigan had much strength; Berkeley, 
Stanford and the California Institute of Technology had outstanding math-
ematicians on their staff, as well as first rate programs in physics and other 
sciences. These universities, as well as Rice in Houston, had a tradition of 
inviting leading European scientists for longer or shorter visits. Thus 
Boltzmann lectured in Stanford as early as 1905; he has written an amusing 
account of his experiences under the title: "Visit of a German scholar to 
Eldorado" , see [1]. Nevertheless, the overall picture was a far cry from what 
we are used to today; jobs were very scarce, and many talented young people 
had no opportunity to reach their full potential . 

The war changed all this; the role of science and technology in winning 
that struggle was crucial. Although the leaders of the scientific efforts were 
physicists, chemists and engineers, mathematicians made very substantial— 
and in a few cases essential—contributions in such fields as water waves, 
aerodynamics, gasdynamics, electromagnetic wave propagation, neutron 
transport , operations research, code breaking and others. The locus of the 
new work was partly at Government laboratories, such as the Ballistics lab-
oratory at Aberdeen, the various Naval laboratories, Los Alamos, etc. , 
and partly at universities such as MIT , Berkeley, Brown, New York Uni-
versity, etc. The speaker spent the waning years of the war at the atomic 
bomb laboratory at Los Alamos. The great secrecy surrounding the project, 
the remoteness and rugged beauty of the site in the mountains of north-
ern New Mexico, the boldness of the concept of using as explosive an ele-
ment that does not exist in nature , and the repeated, miraculously suc-
cessful leaps into the dark created a heady atmosphere. We were very 
much aware that the bomb made a frontal invasion of Japan unnecessary, 
thus saving millions of lives on both sides. Everybody was painfully con-
scious that we were in a race against the Germans , and people noted with 
grim satisfaction that the great contributions of recent refugees from 
Hitler's tyranny, such as Bethe, Fermi, v. Neumann, Peierls, Szilard, 
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Teller, Ulam, Wigner, to name a few, tipped the scale in favor of the free 
world. If ever there was divine retribution, this was it. 

There is a story about a dean at a university, the director of a substantial 
science project during the war, who liked to tell his staff that he was doing 
them a favor by not raising their salaries too high, since after the war they 
would have to be content with their prewar salaries, and that would be 
painful if in the meanwhile they would have gotten used to a higher s tandard 
of living. The dean 's prediction turned out to be wrong; money kept flowing, 
and in almost every other respect scientific life after the war was different 
from the prewar era. This change came about because everyone concerned 
with science and science policy realised how important basic science is for 
technology, including military technology, and how important mathematics 
is for science. The wartime experience moved mathematicians several de-
grees closer to science and opened up a new range of problems to them. 
Also, scientists and mathematicians were elated by their contributions to 
victory over the greatest evil in modern t ime: nazism. They were pleased by 
the outpouring of support for their research, and flattered tha t they were 
taken seriously. The government started pumping money into research and 
education, supporting a very broad range of activities, not necessarily tied 
narrowly to technology. The result was a quickening of mathematical life 
and the rise of new centers. The immediate availability of mathematical 
muscle possessed by the refugees made such an overnight growth possible. 
A few case histories are very instructive: 

There were two large mathematical war efforts sponsored by the Office 
of Scientific Research and Development at universities. One of them was at 
Brown under the direction of Dean Richardson and with the participation 
of such illustrious mathematicians as Bers, Feller, Hurewicz, Loewner, 
Polya, Szäsz, and Tamarkin and many others. The other was located at 
New York University under the direction of Courant and with the partici-
pation of Friedman, Friedrichs, Lewy, Schiffman, Spencer, Stoker and 
others. The two groups had different fates after the war. The group at 
Brown dispersed; the reason for this most likely was the death of Tamarkin 
and the retirement of Dean Richardson. The project at NYU prospered, 
due to Courant 's rare combination of talents, the availability of federal 
support from ONR, the presence in New York City of a large reservoir of 
mathematical talent ready to be tapped, and the help and encouragement 
Courant received from George Roosevelt, Chairman of the Board of Trustees 
of New York University who took a great interest in mathematics . 

Stanford was another university that took advantage of the postwar boom 
to build up rapidly mathematics and statistics. To be sure, there was a tra-
dition of excellence; Blichfeldt, a very distinguished and unjustly neglected 
figure, and Uspensky, member of the Russian Academy of Sciences before 
his emigration, represented a very high s tandard. But it was under the lead-
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ership of Szegö that Stanford established itself as one of the foremost schools 
of analysis and statistics. Timely support by ONR was crucial, and so was 
the backing of the graduate dean, Bowker, and the provost, Terman . In 
fact, under their regime during the following decade Stanford rose to great 
heights in the physical, biological and engineering sciences. 

At about the same time the University of Chicago reestablished its position 
in mathematics under the remarkable chairmanship of Marshall Stone. 

At the three universities mentioned above, as well as others that began 
their bui ldup, refugees—alongside native Americans—filled key positions. 
It is t ime to give a list, necessarily partial , of these illustrious immigrants; 
it is arranged by fields, except for Hermann Weyl and John v. Neumann, 
who cannot be classified so narrowly. I have included in this list postwar as 
well as prewar immigrants:* 

Analysis: Ahlfors, Aronszajn, Bers, Beurling, Bochner, Calderon, 
Courant , Friedrichs, Hopf, John, Kakutani , Lewy, Loewner, Moser, Polya, 
Rademacher, Schiffer, Schoenberg, Szegö, Weinstein, Wintner, Zygmund. 

Algebra: Artin, Borel, Brauer, Chevalley, Chow, Harish-Chandra, 
Iwasawa, Magnus, Taussky-Todd, Zarisky. 

Applied Mathematics: v. Kärmän , C. C. Lin, Lüneburg, v. Mises, 
Prager, Synge. 

Geometry: Busemann, Chern. 
Logic: Gödel, Tarski . 
Number theory: Erdös, Seiberg, Siegel. 
Probability: Feller, Kac. 
Statistics: Gumbel , Neyman, Wald. 
Topology: Dehn, Eilenberg, Hurewicz, Menger, Ulam. 

Before describing the scientific contributions of this distinguished cast of 
characters, a few words about their personalities. Certainly they were in-
dividualists, eccentricity being more tolerated on the Continent and England 
than in America at tha t t ime. (Of course Norbert Wiener was as eccentric 
as they come, but I am not sure how well he was tolerated.) How did this 
eccentric crew fare in the land of the puri tans? Most of them were eager to 
assimilate. An extremely distinguished mathematician of German origin 
who settled in Princeton went so far that he decided to master baseball , and 
set aside Saturday afternoons for that purpose. A visitor, calling during the 
sacred hour, was warned at the door by the great man 's wife: "Ssh! Hermann 
is listening to the bal lgame." 

Other immigrants tried to cling to the ways of the old world. One of them 
was h e a r d t explaining to a friend, also from Europe: 

*A complete list of mathematicians persecuted by the nazis is given in [5]. 
t Attested by Sylvia Aronszajn. 
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•Not all the Europeans were great lecturers; some were truly incomprehensible. 

"Now that we are in America we must behave as Americans, so in public 
you must call me Stefan and I will call you Hilda; but of course when we 
are among ourselves you will continue calling me Herr Professor and I 
will call you Frau Professor Doktor." 

Such an attitude was exceptional and temporary; eventually all refugees 
became as American as Apfelstrudel. 

Wha t about the scientific personalities of the immigrants? They brought 
traditions tha t were very different from the prevalent ones, in style and con-
tent, thus increasing tremendously the breadth—as well the depth—of math-
ematical life here. In particular their greater closeness to applications, es-
pecially in physics, fitted the postwar mood very well. Many of the newcomers 
were in their prime and put forth their ideas with a great deal of vigor and 
confidence. Apparently, the tradition of showmanship in lectures was stronger 
in Europe than on these shores so the newcomers readily found students 
and disciples. It is a pity that there is no filmed record of some of the out-
standing lecturers, of which perhaps Artin was the most brilliant.* 

V. Neumann was a key figure in the transition from pre-war to post-war 
mathematics . The shifting of his own interest from pure to applied math-
ematics is very evident from a perusal of his collected works, [7]. Much , 
but by no means all, of his postwar work had to do with computers; he 
made many highly technical contributions to their hardware, software and 
utilization in scientific computing, and he speculated on their future role. 
For instance, in a talk in Montreal in 1946 he suggested tha t studying typ-
ical numerically computed solutions of nonlinear differential equations 
would lead to theoretical understanding. This has happened in the last ten 
years in a surprising number of instances, such as Kruskal and Zabusky's 
discovery of solitons, Ford's calculations of the dynamics of the Toda lattice 
which led to the proof of the complete integrability of this system. 

This is no place to review the life work of v. Neumann; I refer instead 
to the special issue [2] of the Bulletin of the AMS devoted to that subject. 
Further information on the personality of v. Neumann is contained in Ulam's 
charming book [8], and in a very fine film [6] made under the auspices of 
the Mathematical Association of America. However, no mere list of v. 
Neumann's achievements gives a proper picture of the man; for those who 
are too young to have glimpsed him I offer the image of Gelfand and Michael 
Atiyah rolled into one, with a couple of physicists and economists added 
for good measure. He carried thinking farther than most people can conceive 
of its being carried. That is the reason he was so much sought after by the 
government for advice. In an interview a few years ago on Hungar ian tele-
vision, Eugene Wigner was asked if it were t rue that the U . S . Government 
reached many scientific decisions by simply asking v. Neumann for his 
opinion. Wigner in his characteristic precise manner said, "Well , tha t is 
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not exactly so; bu t once von Neumann analyzed a problem, it was clear what 
was to be done . " 

Not only the government but many mathematicians sought v. Neumann 's 
advice about their research. Not that v. Neumann was able to solve a dif-
ficult problem in a single interview, but he had an uncanny ability of relating 
it to other problems. Often such a reformulation represented the labor of 
six months of the person who posed the question. 

In spite of his superhuman ability for analysis, v. Neumann was not always 
right; e.g., he was against floating point arithmetic and against large core 
memory for computers. But his influence on the whole was overwhelmingly 
good and his premature death robbed applied mathematics and computer 
science of a natural leader, a spokesman and a bridge to other sciences. 

I would like to close with a couple of social comments. It is acknowledged 
tha t before the war antisemitism was fairly common in academic circles. I 
would like to recall here an incident which has partly sinister, partly comic 
overtones, concerning the appointment of Norman Levinson at M I T . Hardy 
was visiting Cambridge when the matter was proposed, and being an ad-
mirer of Levinson, he gave his endorsement in person to a high administrator. 
He was told that there was difficulty with making the appointment because 
there was no room for another Jew on the M I T faculty. Hardy said he didn ' t 
realize tha t M I T was an Institute of Theology, and threatened to expose 
the affair in the pages of Nature unless the appointment went through—and 
it duly did. One indirect beneficial effect of nazism was that it innoculated 
a whole generation against the sickness of antisemitism, so tha t such be-
havior by a university became inconceivable after the war. 

No chronicle of the fifties is complete without a mention of the McCarthy 
era and its effect on science. Here are a few highlights: 

In 1950 the Regents of the University of California imposed a loyalty oath 
on its faculty. As I recall the oath was innocuous in itself; but the idea that 
the Regents could extract it from professors was odious. Independent minded 
faculty members , among them a number of scientists and mathematicians, 
quit rather than sign. They were fully vindicated when the courts declared 
the oath illegal. One can take particular satisfication in the fact tha t the 
President of the University of California today was one of the nonsigners 25 
years ago. A similar loyalty oath requirement was imposed in Oklahoma, 
where it resulted in Aronszajn moving from Stillwater to Lawrence, Kansas . 

The campaigns of McCarthy and of the House Unamerican Activities Com-
mittee were a serious threat to the scientific community. Although there was 
very little sympathy for hard core members of the Communist party who 
have followed the party line through every twist and turn and served as 
apologists for Stalin's byzantine cruelties, scientists realized tha t academic 
freedom is indivisible, and tha t the aim of the charges was not to reveal 
some nonexisting conspiracy, but to make political hay for the fearless 
vampire hunters . 
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I never had to prove my loyalty in a formal security hearing, but several 
of my friends did. In two cases I testified for the defense; in both instances 
the charges were flimsy, but at least they were stated above board, and— 
being flimsy—were dismissed. Other victims had to fight vague, Kafkaesque 
charges, based on evidence in closed files. In those days the nation sadly 
lacked a Freedom of Information Act. 

By and large, universities and especially individual mathematicians be-
haved honorably. We closed ranks , stood up to our tormentors , defended 
the unjustly accused, and scrambled to find jobs for those who were unfairly 
dismissed. So the long-term damage was small. 

I conclude by calling attention to the interesting collection of essays [4] 
on the intellectual migration, and to Laura Fermi's book [3] on the same 
subject. 
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TRENDS IN TWO-YEAR COLLEGE MATHEMATICS 

Donald J. Albers 

1. Introduction. What is two-year college mathematics? The answer— 
"I t is not simply the first two years of a four-year college curr iculum."— 
comes as a surprise to many people. In the recent past , most two-year col-
leges were called junior colleges and most junior colleges were essentially 
devoted to college transfer programs. Thus the surprise mentioned above is 
easy to understand. Today the typical two-year college has a focus much 
broader than college transfer. A detailed comparison of the two-year college 
curriculum with the four-year college (and university) curriculum helps to 
illustrate the fact that two-year college mathematics is not simply the first 
two years of a four-year college mathematics program. In 1970-71 the Con-
ference Board of the Mathematical Sciences (CBMS) carried out an extensive 
survey of undergraduate training in the mathematical sciences resulting in 
a publication of the same name [1]. The CBMS survey is an invaluable re-
source for anyone interested in two-year college mathematics and is the 
main reference for all of the following comparisons. 

2. Remedial Courses. Remedial courses will be examined first (Table 1). 

Summary for remedial courses (as of 1970-71) 

3 3 % of two-year college enrollments were in remedial courses. 7 .5% of 
four-year college enrollments were in remedial courses. Moreover, total en-
rollments in the remedial area were as follows: 

Two-Year Colleges: 191,000 
Four-Year Colleges: 101,000 

Two-year colleges carried nearly 2Δ of the total enrollment in remedial 
courses. 

Trends: It is to be noted that this data is now five years old. (A follow-up 
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Table 1. Percentage of total mathematics enrollments in remedial courses. 

to the 1970-71 CBMS survey will be released in the fall of 1976.) An accel-
erating decline in mathematical ability of entering college students has been 
observed since 1966. It is expected that the 1975-76 survey will show that 
remedial courses constitute a larger percentage of enrollments in both two-
year colleges and four-year colleges. The fact that several campuses of the 
University of California are again offering courses in intermediate algebra 
is evidence along these lines. At a large suburban community college in 
California, remedial courses now constitute 5 0 % of all math enrollments. 

The Seventeenth Annual AMS Survey by John Jewett [2] also cites con-
siderable growth in the remedial and precalculus areas at the four-year level. 

3 . Precalculus courses. Next consider the precalculus picture (Table 2). 

Summary for precalculus courses: A standoff 

21 .7% of two-year college enrollments were in precalculus courses. 2 2 % 
of four-year college enrollments were in precalculus courses. 

4 . Calculus Courses. On to calculus (Table 3). 
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Summary for calculus courses 

12.2% of two-year enrollments were in calculus courses. 26 .7% of four-
year enrollments were in calculus courses. 

Trends: Two-year college calculus enrollments have probably increased 
as more "soft" calculus courses (i.e., calculus for biological, social, and 
management science) have been introduced in two-year colleges. R. D . 
Anderson in his 1975 Report on Employment Data and Academic Math-
ematics suggests that recent increases in four-year college calculus enroll-
ments may be due to new or expanded courses for business students [3]. 

5. Elementary service courses. Elementary Service Courses are examined 
next (Table 4). 

Summary for elementary service courses 

30 .2% of two-year enrollments were in elementary service courses. 2 2 % 
of four-year enrollments were in elementary service courses. 

Trends: In view of increased enrollments in business, we can expect to 
see increases in business math , finite math , and elementary statistics. (R. 
D. Anderson's 1975 Report indicates increases in statistics in four-year col-
leges.) Astonishingly, courses in slide rule are still given today by several 
two-year colleges in California. It is expected that slide rule courses will give 
ways to courses focusing on the use of hand-held calculators. Enrollments in 
courses for elementary teachers probably have declined sharply since 1970-71. 



Technical mathematics is an especially interesting area. From 1966-1970, 
enrollment in occupational and technical programs increased by a whopping 
229% [4], while enrollment in technical math increased by only 4 5 % [1], 
[7] . From 1970-74 enrollments in occupational and technical programs soared 
by an additional 5 5 % [5]. Perhaps this is simply a natural lag. It appears , 
however, that mathematics for occupational and technical students is being 
done in an in-house fashion. Less than half of the 50 community colleges in 
Northern and Central California even offer courses in technical mathematics 
[6]. The dean of occupational education at a large community college in 
California suggests tha t two-year mathematics teachers need to ask occu-
pational and technical faculty what mathematical skills are needed before 
at tempting to institute new "tech m a t h " courses. 

Any employment projections for two-year college faculty should take into 
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Table 4. Percentage of total mathematics enrollments in elementary service courses. 

account this apparent technical math gap . The CBMS 1975-76 Survey which 
is now under way should be examined carefully regarding technical math-
ematics. 

The Committee on Two-Year Colleges (CTYC) of MAA is at this time 
studying technical mathematics in two-year colleges. A CTYC survey carried 
out in the fall of 1974 indicates activity on the tech math front, particularly 
with regard to the production of modular-like materials. 

6. Summary. We now give an overall summary (Table 5). 

Overall Summary 
1. Excluding courses in computer programming, 8 5 % of math enrollments 

in two-year colleges were below the calculus level. 
2. 5 2 % of math enrollments in four-year colleges were below the calculus 

level. 

Implications. On the basis of curriculum alone, one can see a great 
difference between two-year colleges and four-year colleges. 

These differences should be made known to anyone who is considering 
teaching in a two-year college. Furthermore, graduate schools need to thor-
oughly acquaint themselves with nearby community colleges and give con-
sideration to broadening and deepening the preparation of potential two-
year college faculty. How many graduate departments require future two-
year college mathematics instructors to study synthetic and metric geometry? 
It seems they should since 70% of large two-year colleges offered courses in 
high school geometry [1]. How many graduate departments require future 
two-year college math instructors to study statistics? They should since 6 0 % 
of large and medium-sized two-year colleges offered courses in statistics [1]. 
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Table 5. Percentage of total mathematics enrollments in categories of courses (1970-71). 

How many graduate departments require future two-year college math fac-
ulty to study elementary number theory and the history of mathematics? A 
knowledge of the higher arithmetic and evolution of mathematical concepts 
seems especially important to anyone who will teach arithmetic to two-year 
college students who have "seen" all of this stuff before. Shouldn' t teachers 
of arithmetic be telling their students about some of the easily stated prob-
lems of arithmetic which are still unsolved?! How many graduate depart-
ments require that future two-year college math instructors study elementary 
computer science and numerical methods? How many makers of graduate 
requirements have actually spent a full day or two within a two-year college? 
One is unlikely to find the stimulation provided by a weekly colloquium 
nor is one likely to find someone hard at work on a problem from the Monthly 
or TYCMJ. Most two-year colleges do not reward research activities, nor do 
they support professional growth by providing financial assistance to attend 
meetings, to sponsor colloquia, etc. 

Two-year college mathematics faculty are sometimes accused of not being 
interested in mathematics. If the accusation has substance, two-year college 
mathematics is in grave trouble, for when one's passion for mathematics is 
gone his teaching death is close at hand . One certainly does not live by teach-
ing alone. Surely two-year college mathematics faculty initially had an 
interest in mathematics or they would not have pursued majors in mathe-
matics. How does one lose interest in the Queen of the Sciences? And if one 
has lost interest, how can it be rekindled? 

In early January the Physics Department of Stanford University sponsored 
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1966 1970 1974 

Ph.D. in Math Sciences 0.4% 2 % 6 % 

Masters—Math Sciences 5 6 % 6 1 % 6 0 % 

Doctorate—Math Education 1.6% 1 % 4 % 

Masters—Math Education 2 1 % 2 1 % 2 1 % 

Bachelors—Math 8 % 5 % 3 % 

Non-Math Field 1 4 % 1 0 % 7 % 

Sources: 1974: [2], 1970: [1], 1966: [1]. 

Table 6. Educational qualifications of TYC math faculty. 

a meeting of community college teachers of physics. The meeting was a 
smashing success. It was especially gratifying to hear the chairman of Stan-
ford's Physics Department asking them for suggestions as to what Stanford 
might do to help them and vice versa. It was even more gratifying to watch 
the chairman listen thoughtfully and busily take notes on the words of two-
year college physics faculty. 

In addition to basic pedagogical questions, there was great interest in up-
date short courses, colloquia, and the like, i.e., in being rekindled. The two-
year college people were so pleased with the exploratory meeting that they 
asked the chairman if they could reassemble in one month to flesh out their 
ideas. Strong bridges were built between Stanford and surrounding com-
munity colleges on that day. 

The mathematical community might consider similar one day exploratory 
sessions. The potential gains to two-year college math faculty and their stu-
dents, and the mathematical community as a whole, seem to be enormous. 

The question: "Where is two-year college mathematics going?" has already 
been partially answered. An important question at this point might be 
"Where is the two-year college faculty going?" 

First consider educational at tainment (Table 6). 
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Little needs to be said about Table 6 except that it is encouraging and 
may hold out hope for gains in professional mathematical activity at the 
two-year college level. The ongoing 1975-76 CBMS survey will try to make 
a few crude estimates of professional mathematical activity among two-year 
college faculty. 

We close by looking briefly at an area of ever increasing concern to all of 
us . 

8. Job prospects. The area of job projections is certainly one where even 
angels fear to t read. Some information that seems desirable in making pro-
jections is the following: 

1. Present number of two-year college faculty (full-time and part-t ime) 
2. Age distributions 
3 . Enrollment trends 

A. Overall two-year college enrollment 

B. Special areas, e.g. occupational-technical programs 
C. Mathematics enrollments 

4. Number of live births over last 18 years 
5. Part-time employment trends (In California, a 6 0 % full-time, 4 0 % 

part-time breakdown is emerging.) 

CBMS is in the process of obtaining data on all of the above and should 
soon be in a good position to make some projections by fall of 1976. 

To see how difficult projecting can be, consider the following data array 
(Table 7). 

FACULTY SIZE ENROLLMENT 

Full-Time Part-Time F.T.E. 
(in Thousands) 

Math Total TYC Tech. Math 

1966 2677 1318 3122 348 1464 442 

% Change 82% 68% 80% 68% 7 1 % 229% 

1970 4879 2213 5617 584 2500 1013 

4 1 % 55% 

1974 ? 9 7 ? 3527 1573 

Sources: [1), [4], [5], [7], [8]. 

Table 7. Projections. 



Trends in Two-Year College Mathematics 147 

References 

1. J. Jewett and C. R. Phelps, Undergraduate education in the mathematical sciences, 1970-
71, Conference Board of the Mathematical Sciences, Washington, D.C., 1972. 

2. J. Jewett, Seventeenth annual AMS survey, Notices Amer. Math. Soc, 20 (1973) 343-
347. 

3. R. D. Anderson, 1975 Report on employment data and academic mathematics, Notices 
Amer. Math. Soc, 22 (1975) 357-362. 

4. M. Russo and R. M. Worthington, Trends in Vocational Education, U.S. Department 
of Health, Education, and Welfare, Office of Education, Washington, D.C., 1972. 

5. S. M. McMillen, Vocational and Technical Education Selected Statistical Tables Fiscal 
Year 1974, U.S. Department of Health, Education, and Welfare, Office of Education, 
Washington, D.C., 1975. 

6. Northern-Central Community College 1975 Mathematics Directory, California Mathematics 
Council-Community Colleges. 

7. J. Jewett and C. Lindquist, Aspects of undergraduate training in the mathematical sciences, 
Conference Board of the Mathematical Sciences, Washington, D.C., 1967. 

8. S. L. Drake, 1975 Community, Junior and Technical College Directory, American As-
sociation of Community and Junior Colleges, Washington, D.C., 1975. 





ROLE AND STATUS OF TWO-YEAR COLLEGE 
FACULTY 

Peter A. Lindstrom 

This being our Bicentennial Year, to trace the history of the last two 
hundred years of the two-year college mathematics teacher in 15 minutes 
is not an easy task. But if one considers the middle 1890's as being the 
birth of the "two-year college" in the United States, tha t takes care of the 
first 120 years. The next 70 years can be summarized by saying that "noth-
ing much happened during these years ." It has only been the last decade 
that very much excitement has really taken place for the two-year college 
mathematics teacher. 

Ten years ago, the role and status of the two-year college mathematics 
teacher was certainly not a very bright picture in mathematics education. 
A statement made at the MAA Board of Governors Meeting in Houston, 
Texas, exactly nine years ago today (January 25, 1967) gives one some 
idea of the situation at that t ime. In a resolution addressed to the National 
Science Foundation, mention is made that : " I t appears that mathematics 
instruction in two-year colleges may be the weakest link in the whole range 
of mathematics educat ion." At that time, this may well have been true 
in terms of the role and status of the mathematics teachers at the two-year 
college level. In many cases, these teachers simply did not have a proper 
training and educational background to teach at this level. In other cases, 
their previous experience had been at the high school or four-year college 
level and they did not understand the problems unique to the two-year 
colleges. Nearly all of these teachers had one thing in common though— 
very little professional identity, as few belonged to mathematics organiza-
tions and few did anything with mathematics outside of the classroom. 

The past decade though has seen many positive changes for the two-
year college mathematics teacher. We have seen the development of many 
state two-year college mathematics organizations. Many of these state 
organizations arose from a dissatisfaction with the MAA, the NCTM and 
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state and local secondary school organizations. All of these new state 
organizations have helped to raise the level of two-year college mathematics 
and to improve the status of the two-year college mathematics teacher. Such 
state groups have given the two-year college mathematics teacher many 
opportunities they previously never had . 

The past decade has also seen increased support from national organi-
zations. The NCTM has aided two-year college mathematics in many ways. 
Many of its publications appeal to the two-year college people, portions 
of NCTM meetings are devoted to two-year college mathematics , the 
NCTM Board of Directors has a specific member from the two-year college 
ranks, the NCTM has two two-year college people serving as representa-
tives to the Editorial Board of the Two-Year College Mathematics Journal, 
and one of the NCTM affiliated groups is the Florida Junior College Council 
of Teachers of Mathematics . 

Within the past two years, we have seen the formation of AMATYC 
(American Mathematical Association of Two Year Colleges), a new na-
tional organization for two-year college mathematics teachers. Many people 
have raised the question, "Wi th the MAA, the NCTM and numerous state 
two-year college groups, is there a need for another mathematics organi-
za t ion?" No matter how the question is answered, the future and the 
success of this new organization will depend upon the support of its mem-
bership. 

In the past decade, the two-year college people have received much sup-
port from the MAA at the national level. Many of the C U M P publica-
tions (e.g., Qualifications for Teaching University Parallel Mathematics 
Courses in Two-Year Colleges, A Transfer Curriculum in Mathematics 
for Two-Year Colleges, A Basic Library List for Two-Year Colleges, etc.) 
have been directed towards the two-year college people. In 1971, we saw 
the first two-year college people serving on the MAA Program of Visiting 
Lecturers. This has grown to where there are now five two-year people 
involved in this activity. We have also seen two-year colleges using the 
services of this activity quite often in the past decade. Within the past 
few years, we have seen the rise of the MAA Committee on Two-Year Col-
leges, most of its members being from the two-year college ranks . We also 
see now many two-year people serving on other MAA Committees. Also, 
the Second Vice-President of the MAA is often a two-year college person. 
In the past few years, special efforts have been made to have two-year col-
lege people serve on the Program Committees for both the January and 
August MAA Meetings. In turn , various items on these programs are geared 
for people at the two-year college level. The MAA has also given support to 
the two-year college people with many of its recent publications (e.g., the 
Dolciani Series, Selected Papers on Calculus, the New Mathematical Library, 
etc.) . Time does not allow discussion of various other items here, but let's 
not forget the Two-Year College Mathematics Journal. Founded in 1970 by 
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Prindle, Weber, and Schmidt, Inc., the MAA took over the publication of 
the journal in September, 1974, and now it is one of the official journals of 
the Association. Being well received by both two and four-year college 
people, there are now over 4,300 subscribers to the TYCMJ. 

The two-year college people have also received support from the MAA 
at the section level within the past ten years. Many section officers are 
from the two-year college ranks, with some sections having a specific officer 
for the two-year college people. During this period of time we have also 
seen many section meetings being held at two-year college campuses. We 
have also seen more two-year college people making presentations at sec-
tion meetings. Some sections now devote a portion of their section meetings 
to the problems of the two-year college people. Other sections make no 
distinction within their membership, preferring to integrate the two-year 
college teachers with its other members . 

As individuals, the two-year college mathematics teachers have also 
made many noticeable changes in the past ten years. In many respects, 
they have taken on the role of being a "good teacher" and not a "publish 
or perish teacher ." Their educational background has changed, as many 
have furthered their education and have obtained a background in many 
different areas of mathematics in order to teach the variety of courses 
offered at the two-year college level. We have also seen some changes in 
graduate school programs, the end result being people specifically trained 
to teach at this level. In looking at the freshmen-sophomore level math 
texts on the market today, we now see that many are written by two-year 
college people. The two-year college mathematics teacher has also taken a 
leading role in the development of two mathematics journals, the Two-
Year College Mathematics Journal and the MATYC Journal. Both of 
these journals serve as a valuable means of communication for the two-
year college teachers. 

In short, this particular area of mathematics education has made prog-
ress in the past ten years. Even though such progress has been made , 
I feel tha t two-year college mathematics teachers still have many areas in 
which more progress can be made . If one looks closer at the past ten years, 
one sees that the progress made has been the result of the hard work of 
a small handful of interested and devoted teachers from both the two and 
four-year college levels. By no means has it been a team effort as there 
are presently many two-year college teachers who are contributing nothing 
to mathematics . These are the ones who teach their classes, and probably 
do a good job (thus upholding their role of being a "good teacher") , but 
who keep mathematics solely within the classroom. They do not identify 
themselves with other teachers of mathematics; they have no professional 
interests outside of the classroom. Not only do they hur t the image of two-
year college mathematics , bu t this lack of interest will eventually hurt 
their teaching. Even though progress has been made in the past ten years, 
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I feel tha t with this apathy, two-year college mathematics is still a "weak 
link in the whole range of mathematics educat ion." But is it the "weakest 
l ink?" I doubt it, as all levels of mathematics education are confronted 
with similar problems. 

In looking at the future role and status of the two-year college mathe-
matics teacher, I am optimistic that we can strengthen that "weak l ink." 
I look to the future as a time of unlimited opportunities for the two-year 
college people in terms of being not only a "good teacher ," but also a 
mathematician. As a teacher, we must maintain our image of being a 
"good teacher" in the classroom, but at the same time we must not keep 
our mathematics solely within the classroom. We must let others know 
what we are doing with our teaching; at the same t ime, we must find out 
what others are doing in remedial math , technical programs, transfer 
programs, continuing education, etc. The future is also a t ime for two-
year college people to realize that they can make other valuable contri-
butions to mathematics than just through their teaching. There are many 
mathematics organizations at the local, state, sectional and national levels 
for two-year college people to join. But joining the organization is not 
enough; becoming an active participant and giving support of the activities 
of these organizations is what is needed. There are many mathematics 
journals that are geared to the two-year college level; more two-year college 
people should be subscribing to these and reading them. Also, more two-
year college people should be making contributions to these journals by 
writing articles, reviewing articles for the editors, submitting problems and 
solutions, reviewing textbooks, etc. More two-year people should be at-
tending conferences, workshops, seminars and meetings and making 
presentations on mathematical and /o r pedagogical topics. 

Professional identity and professional interests such as these, along with 
maintaining the role of being a "good teacher ," will enable two-year college 
mathematics to become a "strong l ink," if not the "strongest link in the 
chain of mathematics educat ion." The progress made in the past ten years 
has been the work of a few; the progress in the future must be through 
the work of all two-year college mathematics teachers. 



THE PLACE OF TEACHER EDUCATION IN THE 
TWO-YEAR COLLEGE 

Shelba Jean Morman 

The two-year college teacher of mathematics can exert important and 
unique, although often somewhat subtle, influences on both elementary 
and secondary preservice and inservice mathematics education. I propose 
that where these influences can positively affect teacher education, they 
should be maximized. I would like to discuss these influences first from 
the standpoint of elementary teacher education and second from the stand-
point of secondary teacher education. 

In Texas it is now possible, although I would hope improbable, for one 
to become an elementary teacher of mathematics without ever having 
completed a first course in algebra or geometry. Other states show a 
similar irresponsibility toward elementary teacher education. Unfortunately 
when state departments choose to prescribe only low or minimal teacher 
certification requirements, this leaves colleges of these states an excuse 
for their own low requirements where they exist. The problem is magnified 
when colleges of education support and approve such low requirements. 
Too often, I fear, colleges also use low requirements as an at tempt to 
compete for enrollments. Tha t we should decry declining mathematics 
achievement and ignore the inadequate preparation of our elementary 
teachers is somehow incongruous. 

The only, if any, college mathematics the elementary teacher is required 
to take for teacher certification is generally taken during the first two 
years. State requirements in mathematics for elementary teacher certifi-
cation vary from zero to six hours, although there are exceptional cases 
of up to twelve hours. Furthermore, in some states the elementary certifi-
cate is valid for the first eight grades. These facts alone are a demand 
for teaching and learning efficiency wherever these courses exist. Since 
many of our elementary teachers will begin their college education at a 
two-year college, the two-year college mathematics teacher is faced with 
this t remendous responsibility. 
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Recommendations for the content of the mathematics courses for the 
elementary teacher come from many sources. Those of the Committee on 
Undergraduate Preparation in Mathematics of the Mathematical Associa-
tion of America are probably the best known and have the longest history. 
Unfortunately, efforts to follow these recommendations are thwarted by 
the large number of prospective elementary teachers who are unprepared 
for such courses. Perhaps the competency based movement will bring 
about a recognition tha t to expect certain competencies at the completion 
of a course, we must look for evidence of certain competencies at the 
entrance. Minimally such courses should give the elementary teachers 
command of the conceptual tools that will allow them to portray mathe-
matics as a living subject and not as a stagnant collection of facts. Re-
gardless of the content of these courses it is clear that the instruction must 
be maximally effective and require concept mastery to some minimal level. 
These courses should require more than that the elementary teacher be 
able to rotely generate the algorithms of arithmetic. A major objective 
should be to give insight into the nature and structure of mathematics . 
Certainly a recognition of algebra as generalized arithmetic should be a 
minimal requirement for entrance into such courses, and minimal require-
ments should exist for successful exit. If such monitoring does not exist 
elsewhere, I a m suggesting tha t it be done at the instruction level. 

At the present, regardless of the title, the content and t reatment of 
these courses may vary according to the whim of the instructor. Frequently, 
these courses are low status courses within the mathematics depar tment 
and the responsibility for such is accepted condescendingly. I a m suggesting 
that the importance of these courses, where fortunately they exist, should 
be acknowledged. They should be taught by specially trained persons who 
feel a responsibility for teacher training, who will carefully monitor the 
progress of each student, and who will demand high standards of per-
formance. Evidence of the competence of the instructors of these courses 
must be based on more than apparent empathy indicated by a negatively 
skewed classroom distribution of grades. These people must be competent 
mathematically and knowledgeable of how the mathematics they teach 
relates to the mathematics curriculum of the elementary school. To send 
an elementary teacher out to teach addition of fractions who does not see 
any relationship between the addition of 2Δ and V* and the addition of 
α/b and c/d, with a, b, c, and d counting numbers , is surely to be remiss 
in our responsibility. 

The task of the elementary teacher must not be narrowly viewed. The 
elementary teacher needs a sophisticated level of understanding of funda-
mental concepts if he is to ably exploit the opportunities given him for 
enhancing the learning of the students as they respond to experiences in 
mathematics . I t should be recognized that for the elementary school child 
the process of learning should not be mere memorization, tha t facts and 
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verbalization are not satisfactory outcomes and that transfer of training is 
not automatic. This must be conveyed to the elementary teacher, and he 
must be given the knowledge and skills that will allow him to avoid the 
kind of teaching for which these things are the consequence. 

The ever present product oriented mathematics activities which empha-
size immediate learning of very specific information in a tightly controlled 
expository sequence are inappropriate for major emphasis in the classroom 
for they do not allow the needed freedom for developing one's skills in 
problem solving, in formulating and testing hypotheses, in learning how 
to learn. If we expect the elementary teacher to elicit the kinds of learning 
behavior from his students tha t we would have him elicit, he must have 
previously been actively involved in the same kinds of learning behavior. 
If we expect the elementary teacher to involve his students in activities 
requiring the transfer of what they know to isomorphic cases, should we 
not involve him in similar activities? It is probably t rue that teachers tend 
to teach as they were taught . 

It behooves the two-year college teachers to be more adamant on this 
issue of teacher competence in mathematics. The contribution that two-
year college faculties can make to teacher education may ultimately deter-
mine the success or failure of the elementary teacher in the mathematics 
classroom at least in so far as knowledge of mathematics determines suc-
cess. The implications of this for the quality of preparation of students 
who will enter the secondary schools and perhaps, finally, the two-year 
college is obvious. Of course, the accruement of the benefits of increased 
teacher competence must ultimately be shared by the entire society. 

Let us assess now the influence the two-year college teacher of mathe-
matics may have on the prospective secondary teacher of mathematics . 
A large number of prospective secondary teachers of mathematics probably 
begin their study of mathematics in college at the algebra or trigonometry 
level; therefore, many of the concepts that they will teach as secondary 
teachers will be those they most recently encountered in some form at the 
two-year college level. If it is accepted that good mathematics teaching 
behavior by the prospective teacher can be fostered by modeling good 
mathematics instruction, then the importance of these first two years must 
be acknowledged. This component of the teachers ' education may be as 
significant for changing or setting teaching behaviors as any other including 
the professional education component. Although the secondary teacher 
will continue his professional training in mathematics at the upper level, 
it would appear that two-year college teachers still have an unequalled 
opportunity to demonstrate the kinds of instruction that they would have 
these elementary and secondary teacher education candidates display in 
their classrooms for those students who ultimately may be students at the 
two-year college. 

Again, as for the elementary teacher, the spirit of inquiry should be 



156 Shelba Jean Morman 

nurtured in the mathematics classroom, and the process rather than the 
product of mathematics should be the emphasis. Mathematics activities 
should involve more than mere repetition, exercise, or drill. Surely an 
understanding of the concept of the zeros of a function is much more 
important than the production of the roots of a quadratic equation through 
the use of a memorized formula. Unfortunately, somehow the relationship 
between these two things gets lost in a product oriented classroom. Clearly 
I am supporting an emphasis on conceptual learning and an emphasis on 
thinking. A psychologist with the H u m a n Resources Research Organi-
zation has phrased it simply: "The new education must teach the indi-
vidual how to classify and reclassify information, how to evaluate its vera-
city, how to change categories when necessary, how to move from the 
concrete to the abstract and back, how to look at the problems from a 
new direction—how to teach himself. Tomorrow's illiterate will not be 
the man who can't read; he will be the man who has not learned how to 
learn ." 1 

Technological advances are now forcing us to examine our teaching 
objectives. Machines, relatively inexpensive ones, now do the things we in 
the past meticulously had our students do through algorithmic processes 
often routinely and mechanically performed. And the latter we called 
learning, and indeed I suppose it was, but is it the type that should receive 
priority today? As Toffler would put it, "Education must shift into future 
tense ." 2 

The mathematical understanding of teachers must not be determined by 
those who still narrowly view the function of teachers of mathematics as 
that of teaching the students to produce the algorithms as they were taught 
to produce them. Professional monitoring must be performed by an in-
formed, interested, sympathetic, and farsighted group. Should not those 
involved in the teaching of mathematics at least partially compose this 
group? Certainly no other group exists who should be more seriously 
involved in determining the course of mathematics teacher education, and 
no other group exists who can produce the needed improvements in teacher 
education. Higher education sorely needs people who know mathematics 
and who are interested in increasing the competence of those who teach 
it, yet this responsibility is too often being forfeited to those opportunists 
who feel that all the problems of the teaching profession can be solved with 
a carefully written behavioral objective. Perhaps the era of accountability 
will more prominently place involvement in teacher education activities 
among the list of criteria for promotion and tenure of mathematics fac-
ulties. Even at the present there is a growing list of college teachers of 
mathematics who are taking a more than "ivory tower" interest in the 
competence of teachers. 

1 Alvin Toffler, Future Shock, Bantam Books, 1970, p . 144. 
2Ibid.. p. 247. 
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Recognizing the need for improvement in teacher education, specifically 
what can the two-year college teacher do to produce change beyond that 
directly associated with the classroom? The recent publication by the 
National Advisory Committee on Mathematics Education of the Conference 
Board of the Mathematical Sciences gives an excellent overview and analy-
sis of elementary and secondary school mathematics and teacher educa-
tion and provides background reading for those interested in reforms in 
teacher education. Some basic avenues of reform may be found in con-
sideration of the following questions proposed for the two-year college 
mathematics teacher: 

Do you confer with those involved in efforts at upgrading teacher certifi-
cation standards? 

Do you confer with colleges regarding their teacher education require-
ments? 

Do you serve as consultants for elementary and secondary teacher work-
shops and inservice? 

Do you keep current on the mathematics curricula of the elementary 
and secondary schools? 

Do you read the literature of the teaching profession? 
Do you participate in local, state and national organizations concerned 

with teacher preparation and improvement? 
Do you offer on-campus or extension courses designed especially for 

the inservice teacher? 
I do not mean to imply that all of the above are feasible activities for 

the two-year college mathematics teacher. They are only offered as the 
kinds of activities which can bring about change. I am not suggesting that 
the two-year college mathematics teacher should replace the competent peo-
ple already working in teacher education. I am suggesting, however, tha t 
where improvements can be made or need to be made the two-year college 
faculty should work to that end. 





PANEL: MATHEMATICS IN OUR CULTURE 

Moderator: R. H. McDowell 





THE FRESHMAN LIBERAL ARTS COURSE 

Morris Kline 

In his famous poem "Dover Beach" Matthew Arnold expressed his despair: 

". . . for the world, which seems 
To lie before us like a land of dreams, 
So various, so beautiful, so new, 
Hath really neither joy, nor love, nor light, 
Nor certitude, nor peace, nor help for pain; 
And we are here as on a darkling plain 
Swept with the confused alarms of struggle and flight, 
Where ignorant armies clash by night." 

Why was Arnold so despondent? He had just completed a freshman liberal 
arts course and he concluded that if mathematics, the noblest of man 's 
creations, had no more to contribute to our culture than what he had been 
taught, then surely life had little to offer beyond the misery he was de-
scribing. 

The greatest threat to the life of mathematics is posed by the mathema-
ticians and their most potent weapon is their pedagogy. The best evidence 
for this assertion is the treatment of the freshman liberal arts course. 
Through this medium mathematicians have the opportunity to meet the 
greatest number of college students taking mathematics. Beyond numbers 
this group includes not only very bright students but the ones who will be-
come leaders in our society and be in a position to support or influence the 
support of mathematics research and education. Hence teaching a suitable 
liberal arts course is more important than much of the current research and 
at least as important as training research mathematicians, most of whom 
will not do research. And yet it is in teaching just this course that math-
ematicians fail miserably. 

Wha t are liberal arts students taught? The most common courses given 
today offer set theory, symbolic logic, the theory of numbers , Boolean al-
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gebra, abstract algebra (the theory of structures), the axiomatic development 
of the real number system, and such trivial and peripheral topics as the 
Möbius band and the Königsberg bridge problem. 

Wha t is wrong with these topics? Set theory may perhaps be the foun-
dation for the sophisticated approach to mathematics being developed by 
the Bourbaki school but it is of no use in understanding the mathematics 
that can or should be taught at the college level. Moreover, as usually taught 
set theory includes infinite sets. The concept of an infinite set baffled and 
was rejected by the best mathematicians until the 1870s and is still unac-
ceptable to many today. Since the study of infinite sets does not return even 
finite riches to the student he does not see why he should at tempt to make 
his reach exceed his grasp. 

The theory of numbers deals among other matters with prime numbers . 
To a few mathematicians these are delightful, intriguing members of the 
number system. To the students they are hostile strangers. When they learn 
that there is an infinity of prime numbers they become convinced that the 
world is full of enemies. Ah! But the theory of numbers also teaches con-
gruences, which, roughly speaking, teaches arithmetic such as our clocks 
utilize. And so students who have just about learned that 9 + 4 = 13 are 
now taught that 9 + 4 = 1. The mere mention of clock arithmetic makes 
students look anxiously at their watches to see how many more minutes 
must elapse before the period is over. Of course the theory of numbers does 
offer intellectual challenge and aesthetic satisfaction to sophisticated math-
ematicians, but students who have already been soured by eight years of 
arithmetic and two or three years of seemingly pointless algebra and geometry 
are not at all likely to respond to the values that professionals find in that 
subject. 

In the highly artificial, logical development of the real number system 
students are taught among other topics the logical approach to negative 
numbers . The mere mention of negative numbers calls to mind the earlier 
teaching that negative numbers are used to represent temperatures below 
zero and thereafter the students ' minds freeze. Irrational numbers approached 
logically are intellectual monsters, and for the first t ime students appreciate 
mathematical terminology. The entire development of the real number sys-
tem on the basis of Peano's axioms is artificial, contrived, stultifying, useless 
and boring. Poor Gauss! He didn ' t know how to work with real numbers 
because he was born too soon. 

Apropos of the logical development of the real number system many 
authors advance it as an example of how mathematics builds models for the 
solution of real problems. This is not the place to discuss applied math-
ematics but it is very clear that the authors who make such a statement 
about models haven't the least of idea how mathematics is applied. T h e ex-
ample is absurd on many accounts. Let us note two. The real number system 
has been in use since about 3000 B.C. , roughly 5000 years before the logical 



The Freshman Liberal Arts Course 163 

"mode l " was constructed. But no one could have used the real number sys-
tem model before it existed. Secondly, the artificial, complex, logical con-
struction is as far removed from reality as heaven from ear th . No one would 
ever think of using it to predict anything even about real numbers , let alone 
physical applications. The objective in constructing the logical structure of 
the real number system has nothing to do with real problems. In the late 
nineteenth century mathematicians had reasons internal to mathematics to 
base every subject on a clear, explicit axiomatic basis, no matter how con-
trived the axioms had to be . Because this axiomatic basis had not previously 
been supplied for the real numbers several men proceeded to build it. Per-
haps professors know all this and use the word "model" because it embraces 
other more desirable kinds of models and the word may suggest these more 
pleasurable kinds to the students. Unfortunately the logical model of the 
real number system lacks flesh and blood. 

Symbolic logic, which presents the ordinary principles of reasoning in 
symbolic form, is a farce as an approach to teaching reasoning. To know 
what symbolism to use one must already know what the common meanings 
of " a n d " , "o r " , "no t " , and " implies" are. But the students do not have 
these clearly in mind and symbolic logic conceals them under a maze of 
meaningless symbols. How ridiculous to teach symbolic logic to students 
who still confuse all A is Β with all Β is A. 

Worse than that , professors teaching symbolic logic are courting trouble. 
As we all know ρ ο q is correct if ρ is false and q is false. A false proposition 
implies any proposition. Hence the assertion "If the moon is made of green 
cheese, then Gerald Ford was elected president ," is a correct implication. 
Further , since ρ V q is true if ρ is t rue or q is true and if a student says, 
" 5 + 6 is 11 or 12," his answer is correct. 

Boolean algebra, which is closely related to symbolic logic, is taught on 
the assumption that the liberal arts students are going to be electronic en-
gineers. But the application to switching circuits suggests to the students 
that they switch courses. 

The liberal arts courses purport to teach the power of mathematics and 
they do this by teaching abstract structures such as groups. What is done 
with groups evidences the power of mathematics as much as the study of 
philosophy shows how to run a spaceship. 

What is the major problem facing our civilization? War? Inflation? Un-
employment? Health? No. Judged by the liberal arts texts it is the Königs-
berg bridge problem. It is t rue that some 200 years ago the citizens of the 
village of Königsberg in East Prussia amused themselves by trying to cross 
seven nearby bridges in succession without recrossing any one. However, 
Leonhard Euler soon showed tha t the at tempt was impossible. But mathe-
maticians will not let the dead rest in peace and they revive the problem as 
though it were the most momentous one of our times. The villagers may have 
amused themselves in their walks on sunny afternoons but students are not 
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amused to have the problem resuscitated in the chill of a gloomy mathe-
matics classroom. 

Still another favorite topic is axiomatics. The proper name for this topic 
is postulate piddling. My objection is best expressed in the words of Hans 
Lewy: "Too many people are making frames and not enough people are 
making pictures." Students are indeed surprised and gratified to learn that 
nine and one half axioms can replace ten. 

No worse a collection of dull, remote, useless and sophisticated topics 
could have been chosen. They are not representative of mathematics or culture. 
Many come from the foundations of mathematics where only specialized and 
professional needs justified their creation. With a few exceptions they are 
developments that came long after most of the greatest mathematics we have 
was created. The best mathematicians of the past, Archimedes, Descartes, 
Newton, Leibniz, Euler, Lagrange, Laplace, Cauchy, and Gauss used almost 
none of them for the simple reason that they didn' t exist. And even the great 
mathematicians of the present do not use most of them except in specialized 
foundational studies. The topics have about as much value for liberal arts 
students as learning to dig for clams has for people who live in a desert. 

A common alternative to the above melange of topics is a presentation of 
technical mathematics which starts about where the high school courses 
leave off and covers more advanced techniques. Some professors teach their 
own specialties, graph theory or group theory. In a liberal arts course there 
should be no technique for the sake of technique. This technical course is 
no better than the college algebra and trigonometry that the colleges used 
to require of every student. Such a course gives a low return on the students ' 
investment. They are asked to surmount technical hurdles without being at 
all clear as to what the enterprise is all about . They are asked to perform 
mental athletics which leave them tired and dispirited instead of refreshed 
and stimulated. The technical courses offer brick-laying instead of archi-
tecture and color-mixing instead of painting. 

Another common type of liberal arts course offers puzzles, curiosities, 
and trivialities. No one topic is pursued in depth and the topics are discon-
nected so that the professor can choose what strikes his fancy. The texts for 
this type are usually "enr iched" with cartoons. Perhaps pointed, truly hu-
morous cartoons can be admitted as a pedagogical device on the college level 
but sequences of drawings shallow in content and which hardly elicit a smile 
from a six-year old make no contribution. 

Another alternative type of liberal arts course frequently offered and one 
which has acquired great vogue in the last fifteen or so years is generally 
known as Finite Mathematics. Just what is finite is not at all clear unless it 
be the students ' attention span to it. It does not include any calculus but it 
does use real numbers and complex numbers and algebraic processes and 
theorems which involve infinity in several ways. The content, like tha t of 
the typical liberal arts course, is a conglomeration of topics having little re-
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lationship to each other. Such a course, if the topics are properly chosen, 
might be useful to social science students. Presumably then it would con-
tain applications to the social sciences. On examination one finds a math-
ematical system which describes the marriage rules of some primitive Poly-
nesian society. Finite Mathematics is a fad if not a fraud. In any case it is 
not a liberal arts course. 

Many would argue that the contents of a liberal arts course is not the chief 
criterion of its value. The main objective is to teach students precise rea-
soning. A course in mathematics proper may teach sharper reasoning but 
the students have already had three or so years of mathematics in high 
school, and it would seem that whatever training of the mind mathematics 
can supply would have been supplied already. Actually the vaunted value 
of deductive reasoning is grossly exaggerated. The most important problems 
of life are not decided by deductive reasoning. Judgment, the weighing of 
evidence, inductive reasoning, and reasoning by analogy are far more vital. 
Some such thinking could be taught in mathematics but deductive reasoning 
is the only one featured. In any case the question of whether learning to 
think about mathematical themes improves thinking in other spheres remains 
open. Certainly whatever faculties equip a man to understand and judge 
wisely about human problems are not more widely found among math-
ematicians. The distinctions that must be made in analyzing character, 
personality, values, and good and bad behavior are far more subtle and call 
for a more highly perceptive and critical faculty than anything mathe-
matics will ever teach. Deductive reasoning is not the paradigm for the life 
of reason. 

When this defense of mathematics is attacked the professors fall back on 
the aesthetic satisfactions mathematics offers. All the preaching and rhap-
sodizing about the beauty of mathematics will not make such ugly ducklings 
as the logic of the real number system more appealing. There are beautiful 
portions of mathematics but the at tempt to sell the beauty of mathematics 
to the liberal arts student is doomed to failure. Beyond the point already 
made that students are soured by their elementary and high school experi-
ences, there is the obstacle that the beauty is esoteric. 

Many professors believe that the goal of a liberal arts course should be to 
teach what mathematicians do and that this is what they are at tempting. 
No more effective means of driving students away from mathematics have 
ever been devised. What do mathematicians do? They strive for personal 
success and even neglect the interests of the very students they say they want 
to at tract . But mathematicians create. Do these courses then teach the fum-
bling, the guessing, the blundering, the testing of hypotheses, the false proofs, 
and other acts of the creative process? No. They teach theorem and proof 
as though God inspired the mathematicians to proceed directly to the fin-
ished product. 

Mathematicians are narcissists. That ' s tolerable. But they have made 
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mathematics part of themselves and so they offer topics they value in the 
vain expectation that students will value them. But mathematics proper has 
very little to contribute to a liberal arts education. Those who believe that 
such a statement is too strong should heed the words of Hermann Weyl: 
"Mathematics is not a natural concern of man . It has the inhuman quality 
of starlight, brilliant and sharp but cold. But it is an irony of creation that 
man has been most successful where knowledge matters least—in math-
ematics, especially in number theory." Moritz Pasch said tha t mathe-
mathical thought even runs counter to human nature. 

Wha t should a college course addressed to liberal arts students offer? The 
answer is contained in the question. The liberal arts values of mathematics 
lie in the contributions which mathematics has made, directly and indirectly, 
to our understanding of the physical world, to technology, to philosophy, 
especially the problem of t ru th , painting, music, political thought , eco-
nomics, religious thought , and literature. In short, the liberal arts course 
should emphasize the role of mathematics in our culture. This is the type of 
course which a non-user of mathematics would be far more willing and able 
to appreciate and be a genuine contribution to his education. 

The richness and value of mathematics derive primarily from its use in 
studying the real world. The concepts and reasoning of mathematics serve 
to obtain results about physical and social phenomena. Mathematics is a 
means to an end. It may be unfair to compare mathematics with a hammer . 
But the exaggeration may make the point clearer. One could study hammers 
in and for themselves bu t hardly anyone would see much point in this. The 
hammer as a tool, however, is not only effective but indispensable. Even 
the most primitive peoples made hammers out of stones and wood. 

Max M. Schiffer, professor of mathematics at Stanford University, has 
pointed out that , "The miracle of mathematics is tha t paper work can be 
related to the world we live in. With pen or pencil we can hitch a pair of 
scales to a star and weigh the moon. Such possibilities give applied math-
ematics its vital fascination. Can any subject give the would-be mathema-
tician—initially at least—a stronger and more natural interest? And what 
about the non-mathematician? Deny him introduction to this subject, and 
his appreciation of our cultural heritage must inevitably be inadequate . For 
mathematics in the broadest sense is instrumental not only to our under-
standing, but also to our changing the world we live i n . " Mathematics pro-
per may be a monument to human inventiveness and ingenuity but it is not 
in itself an insight into reality. Insofar as it helps us to secure that insight 
it is important . This then is what we must teach. 

The prime accomplishment of a truly liberal arts course should not then 
be mastery of mathematics proper bu t an appreciation of the role of math-
ematics in Western culture. Appreciation rather than skill has long been 
recognized as an objective in literature, art and music. It is equally justi-
fiable as an objective in mathematics . Of course to teach the cultural values 
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we must teach the mathematics that is involved. But we cannot stop short 
with just the mathematics . When students can appreciate why Matthew 
Arnold wrote the lines I quoted at the outset, why they speak trigonometry 
every t ime they say a word, and why the founders of our government began 
the Declaration of Independence with the words, "We hold these t ruths to 
be self-evident . . . " then we shall have succeeded in teaching a liberal arts 
course.* 

Knowledge is a whole and mathematics is part of that whole. However, 
the whole is not the sum of its par ts . The present procedure in the liberal 
arts course is to teach mathematics as a subject unto itself and somehow ex-
pect the student who takes only one college course in the subject to see its im-
portance and significance for the general body of knowledge. This is like 
giving him an incomplete set of pieces of a jig-saw puzzle and expecting him 
to put the puzzle together. Liberal arts mathematics must be taught in the 
context of human knowledge and culture. Mathematics has played and con-
tinues to play a central role in the fashioning of Western civilization. It is 
therefore one of the fundamental obligations of a responsible mathematics 
curriculum to present this value. The professors who do not do so have short-
changed the students. 

Professors must learn that mathematics proper is not the most important 
subject for the non-professional. Even some of the best professional math-
ematicians did not grant the subject supreme importance. Newton regarded 
religion as far more vital and said that he could justify much of the drudgery in 
his scientific work only on the ground that it served to reveal God 's handi-
work. But of course Newton was just a lowly physicist. Gauss ranked ethics 
and religion above mathematics, but Gauss , too, devoted most of his life to 
physics and astronomy. 

The elitist, narcissistic mathematician who presents his own values, beauty, 
curiosities, and trick problems, is totally unfit to be a teacher in a liberal 
course. He is truly culturally deprived. He is as ignorant as a citizen of our 
democracy who is unaware of our constitution and the political principles 
which it lays down. 

The gap between the sciences and the humanities is often blamed on the 
humanists on the ground that they do not posses the will or the intelligence 
to learn the sciences. But the mathematicians are not only unwilling to learn the 
humanities, they are also unwilling to meet their obligation to teach a hu-
manistically oriented course in mathematics . It is ironic that professors 

• I realize that in an article one cannot do justice to the subject of the proper liberal arts 
course. With much concern as to misinterpretation of the motives I mention my Mathema-
tics: A Cultural Approach (Addison-Wesley, 1962) and my Mathematics for Liberal Arts 
(Addison-Wesley, 1967) as fuller expositions of versions of a liberal arts course. However I 
can readily conceive of fine liberal arts courses which would differ considerably from these 
two versions. 
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teaching in a liberal arts college, which is purportedly devoted to educating 
the whole man and to instilling interests and attitudes, are not themselves 
interested in learning material closely related to their own subject. If the 
contents of the various liberal arts courses are any indication mathematicians 
are merely proficient specialists and specialization is the biological niche for 
mediocre minds. 

The fashioning and teaching of a suitable liberal arts course is not just a 
matter of fulfilling our obligation to students. Mathematics is disappearing 
as a requirement for a college degree. At best it is now an option which students 
choose in preference to a science course which calls for laboratory hours. 
And the few who do take and complete the course are grateful only for the 
fact that it is over and vow never to become involved with mathematics again. 
If we can' t do better or won't do better let us drop the farces we offer as a 
liberal arts course and let us stop wasting students ' t ime. In fact if we don' t , 
students will stop us. 

We talk much these days about the public image of mathematics . In the 
liberal arts course we have the best opportunity to reach a large group and 
present a favorable public image. Let us use it and serve ourselves and the 
students. May I close with a quotation from Plato: "Now, when all these 
studies reach the point of inter-communion and connection with one another, 
and come to be considered in their mutal affinities, then, I think, but not 
until then, will the pursuit of them have a value for our objects; otherwise 
there is no profit in t hem." 



THE VICIOUS VERSUS 

R. A. Rosenbaum 

How much has happened in these fifty years—a period more remarkable 
than any, I will continue to say, in the annals of mankind. I am not think-
ing of the rise and fall of Empires, the change of dynasties, the establish-
ment of governments. I am thinking of those revolutions of science which 
have had much more effect than any political causes, which have changed 
the position and prospects of mankind more than all the conquests and 
all the codes, and all the legislators that ever lived. 

Benjamin Disraeli, 1873 

I cannot help thinking that it would be a distinct gain to the ethical as 
well as to the intellectual standing of the clergy, if every man who enters 
the ministry had done some considerable amount of laboratory work in 
some department of science, so as to acquire the power of exact observa-
tion and absolutely truthful description, and had associated with scientif-
ic workers sufficiently to feel the influence of the scientific habit in culti-
vating the sense of veracity. 

William North Rice, 1908 

How wonderful was that optimistic era when mathematics and science 
were thought to hold the key to a golden future! The technology which was 
to develop from science would ensure peace and plenty; in his ample leisure, 
every layman would enjoy the enlightening lectures of the successors of Thomas 
Henry Huxley; mathematicians had merely the task of realizing Hilbert 's 
goal, and scientists, of tidying up the edges of an almost complete physics 
and a well-developed biology; and even ethics would become simple and 
straightforward when subjected to the disciplines of logic and the scientific 
method. 

But how do we fare now? We gag on water polluted by detergents and by 
chemicals suspected of being carcinogens; we choke in ever diffusing smog; 
we curse the automobile fender made of tin-plated oatmeal; we tremble 
when we think of the bomb and of population increases; we shudder when 
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we try to cope with automation, with energy shortages, and with unman-
ageable urban problems. When C. P. Snow calls on the present-day Huxleys 
to explain the second law of thermodynamics to the man in the street, he 
gets no answer, for the scientists are too deeply immersed in their specialties to 
have t ime for such teaching; and J. Robert Oppenheimer says that it makes no 
difference anyhow, because contemporary physics is too difficult for anybody 
but an expert to understand. Problems that once seemed simple have grown in 
complexity, and the mathematician and the scientist experience the frustra-
tions of Sisyphus. Then comes the crudest twist of all—science, far from 
smoothing the way for ethics, itself raises a host of ethical problems, tangled 
and subtle. 

Small wonder, then, that we live in an age of pessimism and anxiety. We 
seem to have created science and technology only to become their slaves. 
Like most slaves, we are not treated too badly by our masters in relatively 
unimportant matters , but we have little control in major issues. Oh, to re-
turn to the simple days, the simple ways! Some restore their optimism and 
banish their anxiety by a procedure frankly irrational; they pretend that 
science doesn't exist. The TV tube and the refrigerator and the hand-held 
calculator are white magic for which all know the incantations; the transis-
tor and the antibiotic and the calculus are stronger magic for professional 
conjurers; the meson and DNA and topological dynamics are only for a few 
sorcerers. 

Ignorance and, perhaps, fear of the effects of science have led many people 
to believe that mathematics and science are cold, mechanistic activities—at 
best, inhumane; actually, probably inhuman—surely less worthly than the 
humanities of the attention of thoughtful, sensitive individuals. This is the 
thesis advanced by the philosopher Brand Blanshard in an article entitled 
"Hamle t Versus the Second Law of Thermodynamics" in the N.Y. Times 
Magazine some years ago. Mr. Blanshard wrote, " I admire at a great dis-
tance the skill of the mathematician in manipulating his symbols according 
to his recondite rules, just as I admire the astonishing gift of young Bobby 
Fischer for manipulating the men on a chess boa rd . " 

An equally distorted view is held by the movie-maker, Frank Capra , who 
is quoted as saying, "Math and logic and creativity don' t go together ." The 
same att i tude is expressed by the novelist Norman Douglas, who has one of 
his characters in South Wind say, "Mathemat ics ... a medieval halo clings 
round this subject which, as a training for the mind, has no more value than 
whist-playing . . . As a training in intelligence it is harmful; it teaches a per-
son to underestimate the value of evidence based on their other modes of 
ratiocination. It is the poorest form of mental exercise—sheer verification; 
conjecture and observation are ruled out . . . If you mention the utility of a 
mathematician like Isaac Newton, don' t forget that it was his preeminently 
anti-mathematical gift for drawing conclusions from analogy which made 
him what he was . " 
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And finally, the poet, Paul Val6ry, one who himself had a genuine ap-
preciation of mathematics, expresses the popular view: "The idea of Poetry 
is often contrasted with that of thought and particularly Abstract Thought . 
People say, 'Poetry and Abstract Thought ' as they say Good and Evil, Vice 
and Virtue, Hot and Cold." 

I suspect that many mathematicians, whose social intercourse is restricted 
to a circle of other mathematicians, to a few non-mathematicians on their 
best behavior, and to a group of dedicated or intimidated students, may be-
lieve the foregoing quotations to be vastly overdrawn. Let me state as force-
fully as I can: candid statements about mathematics made by the average 
shopkeeper, or member of Congress, or doctor, or housewife, or engineer, 
or plumber, or industrial manager, or grade-school teacher, or lawyer, or 
secretary would be even more pungent and pejorative, even more curdling 
and caustic, than these. 

This is a bad situation. It is bad for mathematicians as members of our 
society; it is bad for mathematics as an element of our culture; but , most 
important of all, it is bad for our culture. 

It is probably true that the nature of mathematics and its role in our cul-
ture have never been well understood, even by the educated portion of so-
ciety. The misunderstandings seem to be even worse these days than in ear-
lier t imes, despite the expansion of formal education. In a parochial sense, 
we as mathematicians may be upset by the misunderstandings; but the truly 
serious issue relates to the future of a democratic society which must rely 
heavily on technology and science, and, ultimately, on mathematics . It is 
far from healthy for a society to rely for its survival on the activities of a 
secret priesthood or a group of sorcerers. 

How did we come to our contemporary plight, in which the general un-
derstanding and appreciation of mathematics stand at such a low level? Like 
Professor Kline, I lay most of the blame on our abysmal teaching record; 
but there are other factors, too, like the widespread flight from reason, 
which seems to have accelerated in recent years. One may well ask, " W h a t 
causes a flight from rationality? What is cause and what is effect?" 

I shall not try to answer these last questions, for they are largely irrelevant 
to our course of action. As mathematicians and teachers, with a concern for 
our subject and a sense of responsiblity to our society, it behooves us to exert 
every effort to bring as many of our fellow-citizens as possible to appreciate 
mathematics—literally, to understand it, to enjoy it, and to esteem it. I go 
so far as to suggest that , for many of us, such an effort is likely to have 
greater social usefulness than anything else we do. Articles for the popular 
and semi-popular press, preparation of teachers in elementary and secondary 
schools, involvement in interdisciplinary "general educat ion" courses and 
in adult or continuing education programs, participation in "community 
leadership" and parent-teacher forums—these are some ways to attack the 
problem. 
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As members of the Association, most of us will feel that the place for us 
to start in ameliorating the situation is in our collegiate teaching. With some 
of Professor Kline's criticisms and suggestions, I am in whole-hearted agree-
ment; but I go farther than he in one important respect: I believe that it is 
fruitful to bring mathematics, and not only discussion about mathematics, 
to non-science undergraduates. 

For example, the topic of non-Euclidean geometry has many features of 
pedagogical advantage: 

In the first place, the very notion that there might be more than one par-
allel is itself so shocking as to capture immediately the interest of all but 
the comatose. 

Next, the at tempts to prove the Euclidean parallel postulate illustrate 
"mathematics in the making" , remind us that mathematics is created by 
human beings, and emphasize that there are reasons in addition to a desire 
for economy and elegance for examining an axiom system. 

Also, the virtually simultaneous development of non-Euclidean geometry 
by several people exemplifies a common phenomenon, the psychological 
and sociological aspects of which are interesting to consider. 

Moreover, models of non-Euclidean systems and the usefulness of non-
Euclidean geometries in modern physics link the abstractions of mathematics 
to the "real world". 

Finally, the impact of the development of non-Euclidean geometry on the 
mathematics of the past hundred years, and also on epistemology, can be 
seen to have been revolutionary, with repercussions still felt. Students can 
appreciate various significances in the subject. 

In my experience, students are excited by this topic, discuss its implications 
in other courses, and ask, "How come nobody ever told me about this before?" 

Better late than never. 
It is not my intention to list topics suitable for a course for non-science 

students, but I cannot resist mentioning another—that of instantaneous 
rate of change. Here is an idea of far-reaching importance, with diverse ex-
amples, in which the generality of the method of solution should prove ap-
pealing even to naive students. But more than this—the conceptual differ-
ence between the average rate of change over a small interval and the in-
stantaneous rate of change can be made clear through discussion of the 
Newton-Berkeley controversy, illustrating one aspect of what Dirk Struik 
has called "man ' s struggle with the infinite", and thus helping the student 
to grasp a notion of central importance in the development of mathematics . 

In introducing my examples of topics for non-science students, I spoke 
of "mathematics , and not only discussion about mathemat ics ." But in my 
elaboration, I have made it clear that I favor considerable "discussion about 
mathematics, and not only mathemat ics" in such a course. It is essential, 
I think, explicitly to present both mathematics and its setting: its history, 
its practitioners, its applications, its significance. 
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And, whatever we do, we must modify our presentations so that math-
ematics will not be viewed as " the poorest form of mental exercise—sheer 
verification; conjecture and observation are ruled o u t . " For years, George 
Polya has been urging us, "Let us teach guessing", and we have been ac-
knowledging the validity of his advice. Nonetheless, and despite the magni-
ficent examples which Professor P6lya himself has set before us , we persist 
in presenting mathematics only in retrospect, as a completed structure, de-
void of the struggles, the intuitions, the frustrations, the hunches, the de-
spairs, the insights, the glorious rewards of long, hard work, all of which 
make mathematics a fascinating human endeavor. 

We tend not only to be silent on this aspect of mathematics but to shield 
our students from having any experiences which would lead them to dis-
cover for themselves the fascination which we find in our work. No wonder, 
then, that George Garrett writes in one of his short stories, "H e began to con-
ceive of [a certain individual] as a kind of geometric figure, bloodless but 
well-made." Surely, an ellipse is bloodless, but so is a fugue. The imaginations 
inspired, the feelings evoked, in a full-blooded human being, by a contem-
plation of the properties of an ellipse may be as complex, as ramified, as 
those induced by listening to a fugue. It takes innate sensitivity and consid-
erable education to get the most out of either. 

Similarly, as Hermann Weyl has said, starlight is brilliant, sharp, cold, 
literally with an inhuman quality. But the questions that have been stimulated 
in the minds of human beings by a consideration of starlight have led to 
some of the greatest achievements of the human race—achievements which 
possess transcendent beauty and practical significance—achievements which 
have helped to lift mankind beyond the concerns of mere daily existence. 

It appears to be the vitality of great literature, in contrast with the "blood-
lessness" of mathematics and science, that causes Brand Blanshard to set 
up the dichotomy of "Hamlet Versus The Second Law of Thermodynamics" . 
But the dichotomy ignores the fact that the grand problems of mathematics 
and science are formulations of profound human questions—not universally 
felt, not even widely articulated—but nonetheless inherent in man 's quest 
for understanding and wisdom. 

We agree with Mr. Blanshard that " a man is not a whole man, he is a 
maimed and stunted man , if he is blind to Rodin, deaf to Mozart, indif-
ferent to what Eliot, Gropius, and Picasso have been trying to d o . " Will he 
not agree with us that a man is also not a whole man , he is a maimed and 
stunted man, if he is unaware of Galois, ignorant of Gauss , insensitive to 
what Cantor, Poincare, and Gödel have been trying to do? 

Rather than take sides on Mr. Blanshard's versus, I prefer to follow 
Emerson who expresses an old-fashioned view: 

"We do not listen with the best regard to the verses of a man who is 
only a poet, nor to his problems if he is only an algebraist: but if a man 
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is at once acquainted with the geometric foundation of things and with 
their festal splendor, his poetry is exact and his arithmetic musical." 

Mr. Blanshard ends his article with two cheers for the humanities, perhaps 
leaving one cheer for mathematics and the sciences. I wouldn't be any hap-
pier with two cheers for mathematics and one for the humanities, or with 
one-and-a-half for each. 

I think that it is important for our next 200 years that we work hard to 
get h im and lots of others to join all mathematicians in giving three hearty 
cheers for both! 



PANEL: THE TEACHING OF MATHEMATICS IN 
COLLEGE: A 1976 PERSPECTIVE FOR THE 
FUTURE 

Moderator: C. V. Newsom 





COMMENTS MADE WHEN INTRODUCING THE 
PANEL DISCUSSION 

C. V. Newsom 

"The Teaching of Mathematics in College: A 1976 Perspective for the 
Fu tu re , " the subject of the next panel discussion, is receiving our atten-
tion at a time when a unique atmosphere of concern exists within the 
academic world. "In the brief span of about five years ," Freeman and 
Hollomon* of the M I T Center for Policy Alternatives assert, " the college 
job market has gone from a major boom to a major bus t . " The severe 
turn-around, as Freeman and Hollomon see it, "is a far-reaching unpre-
cedented development of sizeable dimensions." A complex of factors 
provides the basis for the disturbing phenomenon: The depressed economic 
state of the nation has produced extensive unemployment of people irre-
spective of their educational at tainments but , in addition and of major 
significance for us, there has been a pronounced erosion of the traditional 
belief held by the American people that college graduates are special 
people who are capable of distinctive accomplishments within the frame-
work of American life. It is expected, as Freeman and Hollomon have 
indicated, that the sudden decrease in demand for college graduates will 
have an early and significant effect on college enrollments, on institutional 
budgets, on curricula, on the nature and size of college faculties, and on 
the strategy of teaching. Departments of mathematics in college, as is 
true of virtually all academic departments, are concerned, and properly 
so, by the disconcerting trends. 

In fact, the year 1976 must be acknowledged as a year with distinct 
challenges for those who have major responsibility for determining the 
nature of the mathematics program in our colleges and universities. The 
panel presentation which follows, conducted by two of the best known 

•Richard Freeman and J. Hollomon, "The Declining Value of College Going", The American 
Future, fourth in a series by the Center for Policy Alternatives, MIT, Cambridge, Mass. 
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members of our mathematical community, is concerned with the most 
important of those challenges. Israel Herstein, the first panelist, will sug-
gest some answers to the question, Wha t will be expected of the good 
college mathematics teacher? Peter Hilton, second panelist, will deal with 
the question, Wha t experiences should be provided in Graduate School 
to prepare the college mathematics teacher? Both men have received wide 
recognition, both in this country and abroad, for the excellence and the 
versatility of their mathematical accomplishments; if I told you in any 
detail of their accomplishments, it would require a substantial part of this 
hour. Look them up in Who's Who. Both men are known as unusually 
able expositors of mathematics and as exponents of good teaching. 



WHAT WILL BE EXPECTED OF THE GOOD 
COLLEGE MATHEMATICS TEACHER? 

/. N. Herstein 

Let me begin by being properly literary, with a quotation from the poem 
"Locksley Hal l" by Alfred Lord Tennyson: 

"For I dipt into the future, far as human eye could see, 
Saw the Vision of the world, and all the wonder that would be." 

In all honesty, I always found Tennyson to be an insipid poet, and the 
lines I quoted particularly trite. However, today I shall dip into the future, 
albeit not as far as human eye can see. I 'm afraid that many of you may 
find what I see there as neither wondrous nor wonderful. 

I am supposed to speak on " W h a t will be expected of the good mathe-
matics teacher in the fu ture?" Now, prophecy is not exactly my line of 
business, and as a prophet I 'm usually a total loss. Nevertheless, I will 
try to describe the situation, as I see it, for the very near future. Wha t 
I shall say is full of my own biases and prejudices; there is no doubt that 
the difficult job situation for our young mathematicians has played a 
significant role in shaping my thoughts on these matters. As will become 
abundantly clear in a few minutes, I have some particular axes to grind, 
and grind them I shall. 

To my mind three fundamental variables play a key role in determining 
the functions and nature of the mathematics teacher at the college level 
in the next few years. The first of these is: what will be the nature of 
mathematics itself in the near future? The second is: to whom will we be 
doing the lion's share of our mathematics teaching? The third is: what 
will we be teaching them? 

I shall address myself to these questions in turn . Interspersed with what 
I will have to say will be some suggested roads to follow to allow our future 
teachers to be more adequately prepared for their tasks. In this I may 
encroach on the territory which has been staked out for Peter Hilton. I 
hope he will forgive my intrusions. 
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What seems manifestly obvious to me (and to many other people) is 
that the hey-day of the highly abstract is, for the moment, over in mathe-
matics. Wha t is taking place is a concretization, a focusing on particular 
problems, a detailed development of a variety of mathematical systems. 
And our field is not unique in this. To cite one example, painting; it is 
undergoing a similar pattern. We see now a return to realism, a sharpened 
interest in surrealism. Even in the paintings of Wilhelm de Kooning, a 
leading exponent of the Abstract Expressionists, we now see human fig-
ures and a strongly realistic element. But this is not a return to the stilted 
style of realism of the Pre-Raphaelites or the Barbizon school. Instead 
it is a creation of a new type of realism, of a much looser structure. I 
expect the same to happen in mathematics; not a return to realism, perhaps, 
but a return to reality. 

I'll probably be accused of advocating narrowness or parochialism, so 
let me be parochial and use examples and experiences from my own area 
of interest, algebra. I 'm sure that analogs of these exist in all areas of 
mathematics. 

I recently heard two lectures by my distinguished colleague Saunders 
Mac Lane on the rise and decline of abstract algebra. If I understood him 
correctly, what he said was tha t abstract algebra rose and flourished as a 
movement from 1921 to 1971, at which point it began to decline. Not that 
abstract algebra is now dead, but it has assumed a new form and is no 
longer a movement. A retrenchment has set in, and with it a desire to 
apply all the highly abstract gadgetry developed in the preceding period 
to more concrete situations. 

Let's take an example. In my opinion, the best and most exciting work 
being done in the abstract algebra today is in the theory of finite groups, 
especially in tha t part pertaining to the classification of the finite simple 
groups. This is highly concrete work, on a highly specific category of ob-
jects, using long, hard , often dirty arguments . But there is no argument 
with the spectacular successes these people have achieved. I see a similar 
phenomenon—a concentration on the particular—in ring theory, in Lie 
algebras, and in most parts of algebra with which I have some acquaint-
ance. 

I find this trend towards the specific a healthy one. The books written 
by Bourbaki are magnificent and have played a crucial, central role in the 
development of several generations of mathematicians. However, I feel 
that their basic philosophy that mathematics is a unified whole, or perhaps 
more accurately, the effect of this philosophy on many young mathema-
ticians, has been deleterious. There are some mathematicians—damn few, I 
might add—who have either the talent or the perspective or both to scale 
a lofty peak and see the whole mathematical panorama stretched out be-
low them. Our field desperately needs such people; they are often the 
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ground -breakers and direction-finders for new areas of research. But most 
of us are lucky if we can drag ourselves up to the top of a little knoll and 
manage to see, from this vantage point, a small fertile patch. 

In other words, I 'm arguing that most of us are best off concentrating 
our efforts on specific problems, in specific areas; tha t for a large number 
of us our major contribution should be that of problem solvers. These 
problems can be in mathematics itself, or in any other field of endeavor— 
wherever they arise. But let the problems be good! 

I don ' t believe that this contradicts my basic conviction that our students 
must get a wide, thorough education in the basics of the major mathe-
matical fields. To solve a good problem requires a broad, deep under-
standing of mathematics , and a richness and variety of its techniques. 
It also implies a need to know enough about other areas of work, outside 
of mathematics per se, to be able to communicate effectively with the 
people in these fields for whom these problems constitute serious obstacles. 

Wha t has this to do with the teaching of mathematics? Plenty! For, if 
the students we train will have as one of their principal roles that of problem 
solver and of mathematical service to others—and I 'm convinced that this 
will be the case—we better have teachers who can teach their students to 
solve problems, to be more flexible in their view of their responsibilities, 
to be less pristine and aloof. 

How can we achieve this? First of all, we must teach our students that 
mathematics does not exist in a vacuum, that by some fortunate quirk of 
nature, mathematics has a role to play outside of its own immediate con-
text. Surprise, surprise, but it can be used and applied. And it isn't only 
elementary mathematics, or humdrum mathematics that finds application 
elsewhere. Let me cite three examples—out of a very rich sample of pos-
sibilities—from algebra. One of these is from things done 20-30 years ago, 
the other two from work going on right now. 

The first, and oldest, example is the use of the very beautiful and pow-
erful results of Frobenius on matrices with non-negative entries, in eco-
nomics. Such application can be found in the work of Metzler, Solow and 
others. This is a form of problem solving, the problems arising in the need 
to set up and to analyze a model of a specific set of economic situations. 
And here we see, to reach the ultimate goal of answers, a genuine appli-
cation in an allied field of non-trivial algebraic facts to derive non-obvious 
results. 

The second example is the application of the results of one par t of 
mathematics—commutative ring theory—to solve specific problems in an 
other area of mathematics—combinatorics. This can be found in the work 
of Richard Stanley. He uses, highly effectively, very fancy, sophisticated, 
even esoteric results from commutative algebra theory to the solution (and 
by solution here I mean a definite answer) to a series of combinatoric 
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problems that could be explained to the average individual. This is applied 
algebra at its highest level. Problem solving, but really good problem 
solving. 

The third example is of a slightly different nature. It involves the de-
scription, in highly specific and concrete terms, of the simple objects in 
an algebraic theory. The area is that of classifying the finite-dimensional 
simple graded Lie algebras—work that is going on right now. The prob-
lems arose and were formulated by physicists in their study of super-
symmetries. This sparked an interest among some outstanding American 
and Russian algebraists to tackle and to solve the problem, which they 
essentially have now done. The physicists may now have the tools to finish 
their job in this direction of their research. The nature of the mathematical 
problem, and the techniques for its solution, are alien to the physicist's 
way of thinking. It needed first-rate algebraists to carry it through. I 
might add, parenthetically, that the mathematics so developed, as an 
entity all by itself, is interesting mathematics of the highest calibre. So 
there has even been a pay-off to mathematics itself. But, I would still 
describe what was done as problem solving, admittedly at a somewhat 
rarefied level. 

To summarize what I said earlier, I feel tha t at the undergraduate level 
we must teach our students the importance of mathematics as a tool and 
as a problem solver. We must give them the wherewithal to use this tool; 
we mus t teach them to keep their feet on the ground. Sure, they must 
learn a lot of abstract mathematics, but wherever possible they must be 
shown that these abstractions have something to do with a reality within 
or without mathematics . 

To do so puts heavy demands on both the student and the teacher. But 
I 'm going to insist on more. For the average mathematicians it will not be 
enough just to have a strong command of their own subject. For them to 
be able to practice mathematics as a profession, they will have to know 
other areas almost as well as they know mathematics. This requires time 
and effort. 

What I urge is that our mathematics majors, from their very first days 
in college, carry a dual major. This implies tha t they specialize from their 
freshman year on in mathematics and X, tha t their training in X be as 
complete and thorough as that in mathematics . Clearly something will 
have to be given up . Tha t something is the fulfillment of liberal arts credits 
and courses. I know that what I 'm saying horrifies Educators who will 
claim that we will turn out highly trained technicians, culturally retarded, 
imbeciles outside of their own field. However, I feel it is imbecilic to ex-
pect tha t the thin pat ina of culture deposited on our students by a few 
liberal arts courses makes them culturally advanced or intellectually ori-
ented. I don ' t believe, nor have I ever believed, tha t these courses have 
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broadened our s tudents . Nor have I seen a notable lack of culture or 
intellectuality amongst the mathematicians I know who have been trained 
in such kinds of dual major programs. In fact, in a large part of the world, 
university education is precisely along such lines. Naturally I would like 
the mathematician to be a broad cultured person. But culture is acquired 
through reading, through experiences and not by the token exposure to 
a few courses. 

Be that as it may, I feel that this dual major is important , even necessary, 
for our mathematics students and prospective mathematics teachers. To 
use an odious term, their talents will be more "saleable", for, clearly, 
they will have more to offer. In addition, taking into account the kind of 
students they will be teaching, they will be better equipped to understand 
their students and to teach these students what they need, in a framework 
that these students can understand and appreciate. 

I now turn to the second and third variables "whom and what will we 
be teaching?" Here, too, a definite pattern has been emerging in the last 
few years. Let me speak about what has been taking place at the University 
of Chicago, admittedly a highly atypical example. We have relatively few 
undergraduates—about 2500 out of a total student population of 7500— 
we have no engineering school and no undergraduate school of education. 
Yet, judging from what I have heard from friends at a large cross-section 
of colleges and universities, what has been happening with us is happening 
with them. In the past few years both the number and diversity of the 
students we face and teach have jumped markedly. In the past three years 
the number of students taught in our depar tment at Chicago has gone up 
by 2 5 % . With all this, the number of mathematics majors has decreased 
or, at best, stayed constant. We are teaching students from a wider and 
wider sector of the university. More and more outside departments insist 
that their students learn mathematics . I feel tha t we are seeing only the 
beginning of a t rend which will become more and more widespread. 

If this is the case then we obviously must take a fresh look at what our 
responsibilities will be in the university and in the community at large. 
One thing is clear to me. We no longer can afford to be embroiled in the 
kind of hassles we have had in the past with the engineering schools about 
the content and emphasis of our courses designed for their students. While 
we might have been able to fight off the engineers, we certainly can ' t take 
on the whole university. Nor should we want to . 

If the statistics I quoted earlier reflect the present-day realities, then we 
are facing a very wide gamut of students. These students have ranging 
interests. Perhaps the only feature they have in common is that , while 
they need mathematics , they are not interested in the mathematics for its 
own sake. And we must take cognizance of this. We—that is the mathe-
matics teachers of today and tomorrow—cannot blithely say (as we so 
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often did in the past): here, we present you with mathematics as we see 
it, take it this way and, if you don' t like it, the hell with you. It just isn't 
going to work. 

We must be flexible, accomodating, even responsive, not because it is 
the politic thing to do but because it is the right thing to do . These stu-
dents will be with us a certain length of t ime. It is our responsibility to 
use this time to make them as proficient and capable as possible with 
the mathematical tools they will need. 

Don' t get me wrong. I 'm not suggesting tha t we compromise our mathe-
matical principles, nor that we teach mathematics as a cookbook subject. 
Far from it. But I am suggesting that we slant our teaching and the course 
content more to the particular needs and talents of the students involved. Most 
important , tha t we view these needs and talents sympathetically. 

In order to do this the teacher, or, at least, the set of teachers, must 
know enough about the disparate fields from which the students come, 
and about the way of thinking in these fields. Only this way can we set 
up meaningful syllabi for such courses. In fact, I would prefer tha t these 
courses have definite goals but somewhat amorphous syllabi. The good 
teachers, confident in their mastery of a block of outside material, would 
play everything by ear, tailoring the courses according to the student 
make-up of the particular sections. 

Even in our purest courses, for our most abstractly oriented math 
majors—many of them, after all, will be mathematics teachers—we should 
constantly be showing the students how the course material is used. These 
math majors would be better off if we taught them somwhat less material 
and somewhat more about what this material means and can do . For 
instance, in teaching linear algebra why not digress to discuss some of 
the applications as in Noble's book, or to the t reatment of economic models 
in some of the work I cited earlier? In discussing finite fields, why not 
develop algebraic coding theory, as one of the consequences of the general 
theory? This means tha t certain other material has to be left out. Fine. 
We can always pick u p Galois theory, say, in the first year graduate 
course. 

I recognize that it is difficult for us, with the kind of training, emphasis 
and point of view that we have had, to develop such material , devise such 
curricula, and write appropriate texts. But at least we can lay the ground 
work so that our successors—our students of today and their s tudents— 
will be adequately equipped to carry through such programs. 

Until now, the bulk of mathematical material that we have been teaching 
to students from outside fields has been at the calculus or pre-calculus 
level. I don ' t think that this will persist very far into the future. I fore-
see a widening and deepening of the subject areas that we shall teach 
others. As the outside fields become more sophisticated mathematically— 
and this is constantly taking place— they will demand that their students 
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learn more, and more sophisticated, mathematics. To give a small ex-
ample, in the most recent undergraduate course in abstract algebra that 
I gave, half the students were undergraduates from other departments , 
and the best student was an economics major. 

The need by others of more sophisticated mathematics will accentuate 
our problems. While it may be easy to show the usefulness of the calculus 
in a large variety of situations, it will be much harder with the more esoteric 
material we will be teaching. And let's not forget the computer. Its glamor 
and ubiquity must be reflected in our offerings, not just in some proforma 
way, but genuinely integrated into the mathematics taught and in the 
applications. It goes without saying tha t for our students to be effective 
teachers they will have to know a great deal about programming and 
theoretical computing. We should insist tha t all our math majors learn 
these things now. 

Running through everything I have said has been the theme that our 
students and prospective teachers be more familiar with, and more at 
home with, the uses and applications of mathematics , that we and they 
get off our high horse about the service role of mathematics . Let's not 
forget that many of our mathematical heroes made substantial contribu-
tions outside of mathematics itself. Many astronomers and physicists 
consider Gauss as one of them. There are some fundamental results in 
particle physics that are due to Emmy Noether. A field created by von 
Neumann is now more properly a part of economics than of mathematics . 
And even G. H. Hardy, who revelled in the uselessness of mathematics , 
has a result in genetics named after him. 





WHAT EXPERIENCES SHOULD BE PROVIDED IN 
GRADUATE SCHOOL TO PREPARE THE COLLEGE 
MATHEMATICS TEACHER? 

Peter J. Hilton 

First, let me commend to you the remarks made by my friend Professor 
I. N. Herstein. I entirely agree with the principles which he has enun-
ciated, and I am very happy to have learned from him of examples which 
strengthen my own convictions about the relationship between pure and 
applied mathematics. I see my own role on this panel as that of providing 
some practical guidance as to how the objectives which we both desire 
may be achieved. 

To answer the question which forms the title of my own contribution, 
we must first try to answer the related question, what do we expect that 
the college mathematics teacher will be teaching and whom will he be 
teaching. His students will be divided into four overlapping categories: 
(a) future users of mathematics , (b) future educated citizens, (c) future 
teachers, (d) future mathematicians. I take it to be common ground that 
he will be preeminently concerned with teaching mathematics to members 
of the first three of these categories, so I would like to concentrate on this 
aspect of the question. (In any case the problem of teaching future mathe-
maticians is in my view essentially solved—many would say that it has 
been solved far too successfully!) I will claim that the problem of teaching 
the future educated citizen is a proper subset of the problem of teaching 
the future user of mathematics. I will also very shortly propound a proposi-
tion which will effectively allow me to set on one side the question of the 
teaching of future teachers, so tha t I feel justified in concentrating, at this 
stage, on the problem of teaching the future user of mathematics . 

By the term 'user of mathematics ' I intend somebody who uses mathe-
matics in his work. He may therefore be an academic who works in some 
theoretical science. However, such a user of mathematics will, I believe, 
be rare, in the foreseeable future, compared with somebody who uses 
mathematics outside the academy; and therefore I wish to make the latter 
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my paradigm. Thus , it seems that we should agree a t the outset tha t the 
college mathematics teacher will be teaching with a view to his students 
having a good understanding of the nature of mathematics and of how it 
is applied to the real world. I will describe such a student, in his future 
career, as a 'mathematician in industry' in order that I should not be 
accused of avoiding difficult issues. Thus we must now decide what sort 
of preparation a mathematician in industry requires. 

This preliminary inquiry aids us a great deal; indeed, we waste no effort 
at all in first coming to grips with the problem of the necessary equipment 
for the mathematician in industry, for I assert the proposition tha t to 
prepare a student to become X is a proper subset of the task of preparing 
a student to educate future X's. From this proposition follow two corol-
laries. The first, already mentioned, is that in this analysis we can leave 
on one side the task of the college mathematics teacher of educating future 
teachers since the solution to that question follows by induction once we 
have solved our given problem. Second, and more controversially, it follows 
that whatever the mathematician in industry requires will be required of 
the college mathematics teacher. (But more will be required of the latter.) 

At this stage a little notation would perhaps be helpful. Let A represent 
the set of mathematicians teaching in graduate school. Let Β be the set 
of graduate students in graduate school who will go on to become college 
mathematics teachers. Then the members of Β are the students of the 
members of A and are to be thought of as the future teachers in colleges. 
Let C be the set of students in colleges. These then are the future students 
of the members of Β and in our discussion so far we have been considering 
the future careers of the members of C. The question before us is how 
should the members of A influence and develop the members of B. Our 
argument has been that the members of Β must be so educated that they 
can play any of the future roles of members of C, and that the predomi-
nant such role is that of a user of mathematics; and we will further argue, 
of course, tha t their training must include further components. By this 
notation we emphasize that the ultimate responsibility rests with the mem-
bers of A—and this I believe to be one of the most important points to 
be made . 

Let us return then to the question, what is the necessary education for 
the future mathematican in industry? Here I entirely concur with Herstein 
that it must consist of a thorough grounding in the art and science of 
mathematics together with a proper conception of, and real experience 
of, applying mathematics . It does not appear to me to be of great import-
ance to what field of science the mathematics is applied, so long as the 
applications are genuine and significant. Thus I do not have in mind at 
all a traditional applied mathematics course. It is essential that the stu-
dent himself should have experience of the various stages of work in applied 
mathematics. I list the stages under six headings: 
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1. The selection of a problem suitable for attack by the methods of 
mathematics. 

2. Selection of a suitable mathematical model. 
3. Collection of da ta . 
4. Reasoning within the model. 
5. Calculations. 
6. Reference back to the original (non-mathematical) situation to test 

the validity of the conclusions drawn from the model. 

Of course one is not to think of these six stages as simply forming part 
of a linear progression; there is considerable feedback in the process. For 
example, if it is discovered that the proposed solution is not valid for the 
original problem, then it may very well be necessary to modify the mathe-
matical model or to collect more data . It may also be the case tha t the 
model is found to be too complex to enable any effective reasoning to take 
place. Then the model may be simplified (e.g., by linearization) in the 
hope that the new model will be susceptible of mathematical analysis and 
will still not be too far removed from the original problem. 

I would like to remark at this point that a schema outlined above is 
valid, with certain obvious modifications, for research in what is known 
today as 'pure mathematics ' . I would be very happy to see the distinction 
between pure and applied mathematics reduced to appropriate and mod-
erate proportions. For me the distinction rests very largely on the issue 
of the type of problem which stimulates and motivates the mathematician, 
and not on the sort of mathematics he uses or creates. I believe tha t the 
procedures adopted by pure and applied mathematicians are, in principle, 
extremely similar. 

Thus , it is necessary to emphasize that the fact tha t a student will ex-
pect to be applying his mathematics to the real world does not imply that 
he can or should ignore certain parts of mathematics. Of course, it implies 
that he should have a working knowledge of probability and statistics and 
an understanding of the role of computers. However, it would not be safe 
nor sound educational policy to cut him off from contact with algebra, 
topology and geometry simply because he is to become, in some sense, an 
applied mathematician. Examples abound today—Herstein gave some in 
his presentation—of parts of mathematics developed for purely analytical 
purposes which have turned out to be the appropriate tools for the study 
of problems drawn from the physical, biological and social sciences. 

My remarks also imply that I am opposed to a trend clearly discernible 
today of appointing applied mathematicians to mathematics departments 
in colleges and universities in preference to excellent pure mathematicians, 
simply on the grounds that they will be expected to teach applied courses. 
I believe that any well-educated mathematician should be able and willing 
to teach service courses at the undergraduate level in any area of mathe-
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matics, and even any undergraduate courses to mathematics majors at 
least u p to junior level. A mathematics depar tment should try to get the 
best mathematicians available, whether they are 'pure ' or 'applied' . It is 
of course perfectly legitimate, and indeed correct, to explain to a candidate 
for a position that he will be expected to teach, shall we say, statistics 
courses to psychologists. If he does not want to do this, then there is a 
very good case for moving on to the next candidate; but, to do as many 
departments are doing and to eliminate pure mathematicians at the out-
set because of the need to provide such service courses is, in my view, 
entirely wrong-headed.* 

Who will be giving the graduate student the experiences and attitudes 
which we have said he should have in order that he should have the poten-
tial to become an effective college mathematics teacher? Returning to our 
earlier terminology, these will be the members of A. Thus I believe tha t a 
very heavy responsibility rests on the mathematicians in graduate schools 
today. It is simply not good enough to continue to do what we have done in 
the past , namely, to reproduce our own kind. We have to set an example to 
our students which will indicate to them clearly that we rate highly the 
tasks which they are likely to have to carry out for themselves in their own 
careers. We must show our respect and concern for applied mathematics . 
We must learn something ourselves of how mathematics is applied. We 
must also, of course, show our respect and concern for good teaching. 

This, then, brings us to the question of what are the extra requirements 
that we should ask of the college mathematics teacher over and above 
what we ask of his successful s tudents . That is to say, what should we, as 
members of the set A, be doing for our students as members of the set 
B, beyond preparing them to become, were they so minded, users of 
mathematics . These extra requirements arise from the fact that the college 
teacher will be teaching at various levels, so that he must be familiar with 
those levels and with the difficulties and natural thought processes of 
students at those levels. Of course it is common ground that any teacher 
of mathematics must be familiar with the topic he is teaching at a level 
above tha t at which he is teaching it. This alone would justify his studying 
some area of mathematics at the research level. Further, we must expect 
the future college mathematics teacher to have a real concern for teaching, 
and an understanding of what is basic to mathematical education. He can 
evince and develop his concern for teaching during his work in graduate 
school, and he must be encouraged to do so—this is the point tha t we 
were making above when we referred to the example which should be set 

*I have not discussed here the perfectly legitimate desire a department may have to build up 
graduate work and research in some area of applied mathematics. In that case, of course, 
the department is perfectly justified in appointing the best person available in that particular 
field of mathematics. 
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by professors in graduate schools. He should also, in my view, acquaint 
himself with the ideas of those who have thought carefully about problems 
of mathematical education, and whose views command respect. I would 
go further and say tha t it would clearly be desirable that all graduate 
students should show an interest in questions of teaching. If for no other 
reason, it is surely the case that the best way to discover whether one 
understands some part of mathematics is to be placed in the position of 
having to teach it. 

It would appear that I am saying that the experiences which should be 
provided in graduate school should include all those provided now and 
several more as well. I do not believe that one can shirk this conclusion. 
However, it does not frighten me too much. For it is an unfortunate fact 
that many graduate students spend an unconscionable time in graduate 
school, and that the time is very often not well spent. I believe it is neces-
sary for us, members of A, to take far more responsibility and far more 
consistent responsibility for the education of our students. I have known 
all too many cases in which the nominal research supervisor is unable to 
state on what problem his nominal research student may be working. This 
neglect of the student by his supervisor could never be justified and today 
is less defensible than ever. We should make sure that every student in 
graduate school deserves to be there, and that he is using his t ime effectively. 
If this were the case, then I believe that it would be perfectly possible to fit 
into his graduate training those extra requirements which are indicated by 
my remarks above. 

Let us admit that we have not been turning out good teachers at the 
pre-graduate level—or, at any rate, let us admit that if we have turned 
out such good teachers, it has been largely by accident. We have been 
turning out too many narrow specialists, people who are research-oriented 
without being necessarily research-talented. We have to provide experiences 
in the graduate school which will develop the many facets of mathematical 
talent, and which will lead our students to face the prospect of college 
teaching with enthusiasm, even in situations in which there will be little 
overt encouragement to them to do research. One way I would propose 
in which we can ourselves provide this encouragement is by taking the 
view that our students remain our special concern even after they obtain 
their doctorates and take their first job . We should not take the comfort-
able view that we are doing our duty provided we update from time to 
time our letters of recommendation for them. We should continue to con-
cern ourselves with their development as mathematicians. We should seek 
to maintain personal contact with them, and we should seek to involve 
our own institution in their continued activity as mathematicians. 

But here I go beyond my brief. I hope that my remarks will stimulate 
discussion of what is, by common consent, a very urgent and very impor-
tant problem. 
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A BELATED REFORMATION 

S. K. Stein 

For centuries mathematicians have occupied the pinnacle of prestige. We 
were described in 1734 with these words in Bishop Berkeley's The Analyst: 

" . . . you , who are presumed to be of all men the greatest masters of 
reason, to be most conversant about distinct ideas, and never to take things 
upon trust, but always clearly to see your way. . . It is supposed that you 
apprehend more distinctly, consider more closely, infer more justly, con-
clude more accurately than other m e n . . . " 

Since World W a r II we have tacitly agreed. Swelling college enrollments 
and research support sustained our self-esteem. There was no compelling 
reason to take a hard look at ourselves. But in recent years the employment 
crisis has shattered the self confidence of the mathematical community. 

In the brief golden era that stretched from around 1950 to 1970 the value 
of pure mathematics—largely detached from its origins and its applications— 
was seldom questioned. New and growing departments made sure that pure 
mathematics was well represented. Generally, neither undergraduate nor 
graduate mathematics students were required to study physics or any field 
that traditionally used mathematics . The new-math revolution reflected the 
t r iumphs of the pure mathematician: what was valuable at the frontiers of 
research was assumed appropriate to every child in the land. One high 
school curriculum project was based on the announced assumption that 
5 0 % of the populace would require calculus. 

Now tha t the tide of research support and student enrollment has turned 
from pure to applied math , departments have moved in unison, from star-
board to port, tilting the ship of mathematics precariously in the opposite 
direction. Computing and statistics split off from some math depar tments , 
or at least develop their own majors, leaving the traditional math offerings 
unchanged, and sometimes unat tended. A speedy abstract algebra course 
might be offered in the electrical engineering depar tment , while enrollment 
in the traditional one dwindles. 
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Some mathematicians are trying to return applications to the s tandard 
curriculum. They are doing this not just as a projection upon their students 
of their professional frustrations. After all, the broad undergraduate curric-
ulum should not simply reflect the latest forecast for P h . D . employment. In-
deed, all through the "new-math" movement, which ranged from kinder-
garten through college, some mathematicians did criticize its alienation from 
the origins of mathematics. How do we bring back applications from their 
exile? Should we replace whole courses with new ones? Must we insist, not 
merely recommend, that undergraduate math majors take a sizable dose 
of physics and other disciplines that use mathematics, perhaps even a double 
major? Should we include applications in our traditionally " p u r e " courses, 
even at the sacrifice of some theory? 

Is there a danger that the applications we devise or choose ourselves, on 
the basis of a summer's crash seminar and the conceit Berkeley described, 
might have primarily an esthetic appeal? Might we not create—out of ped-
agogical zeal—a new branch of knowledge, "pure applied mathemat ics ," 
which is pure math camouflaged in the applied jargon? Such so-called ap-
plications are never put to the test of real applied math , namely, tha t the 
model tells us more than we told it. Is it reasonable to expect a generation 
of mathematicians, narrowly trained, perhaps oblivious of the origins of 
their own field of interest, to convey to their students a broad view of math-
ematics? 

We should be wary of choosing as "applied m a t h " some new exciting ad-
vance in pure mathematics, which claims eventual applications. The rise 
and decline in the theory of games should stand as sufficient warning. 
Nowakowska ([2] p . 267) after a detailed study of publications in this field, 
concluded: "The second factor which influenced the development and the 
loss of interest in theory of games is connected with the change of interest 
in [the] theory of games by non-mathematicians. Since the starting point of 
the theory of games is the analysis of situation [s] of conflict, it was generally 
expected that this theory would be applicable to [the] study of such situations 
in social sciences. This caused originally a great demand for mathematicians 
dealing with theory of games: [who] were probably financed by army, and 
other institutions interested in potential applications of theory of games to 
their problems. Thus, the interest in [the] theory of games, at least in the 
United States, was reflected in financing mathematicians. As it gradually 
turned out that theory of games cannot serve as satisfactory universal model 
of situations of conflict, the interest of non-mathematicians (and conse-
quently, also that of mathematicians) faded." Contemporary candidates for 
a similar evolution may be the theory of fuzzy sets and catastrophe theory. 

I think we need not wait for the next generation of mathematicians to 
begin to compensate for our failures of omission. Before making some 
modest suggestions—more precisely, raising what I think are questions worth 
answering, let me cite some typical at tempts already made in this direction. 
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One professor, teaching an upper-division algebra course, thought it 
would be a good idea to devote the third quarter to the many applications 
of algebra in coding theory. His department turned down his proposal, in-
sisting on the traditional application: Galois theory. 

As a calculus author, Morris Kline incorporated physical applications in 
such a way that they could not be skipped. Years later he observed in a letter, 
"most college professors do not wish to teach physical problems. Many are 
not prepared to do so and others just do not wish to give it the t ime. They 
think that they make more progress by teaching more calculus, even if the 
stuff is meaningless to the s tudents ." 

Another calculus author put the applications in separate chapters . Pro-
fessors did not cover them. In the next edition, applications infiltrated the 
book in separate one-day sections. Still they were generally skipped. Users 
advised the publisher to "keep them in, but we don' t have t ime to cover 
t hem." Gradually the applications were demoted to "examples , " thence to 
"exercises," and lastly to the final resting place of "review exercises." 

There are now at least two upper-division algebra texts that incorporate 
significant applications, and at least one differential equations text that 
motivates each chapter by application and history. 

For twenty years one college offered a course, taught jointly by physicists 
and mathematicians, which integrated calculus with physics. One professor, 
looking back on the experiment, commented, "Mathemat ics suffered from 
this arrangement . Students tended to think of mathematics as existing solely 
in the service of physics, which was perceived as the more modern and ex-
citing of the subjects." 

One department introduced a course on applications and a course on 
history, but few can teach the first and no one knows what to do in the 
second. Both are fundamentally guilt offerings to compensate for defects in 
the " s t anda rd" courses. 

These few cases show that some mathematicians have been trying to wed 
theory and application after their long separation in the curriculum. But 
they also warn us that the effort to do so may fail or even boomerang. Still, 
there are some modest steps that any mathematician, as teacher or author , 
might consider, steps that might be dubbed an "affirmative action p rogram" 
to put mathematics in proper perspective. My concern is for the short range 
period. The experiences we have with a variety of small experiments will 
presumably suggest more substantial proposals in the years to come. 

First of all, whether conducting a service course or a course for math 
majors, the instructor can ask, "How is this material related to other branches 
of mathematics or the sciences? Could I spare a few days of the course to 
introduce these applications?" These questions may raise difficult choices: 
Should I cut down on homomorphisms in order to include the Burnside 
counting theorem? Should I sacrifice related rates or curvature in order to 
cover Poisson traffic? Should I omit the proof of a theorem on finite fields 
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in order to explore their many combinatorial and geometric applicat ions?" 
Even if these choices are not articulated they are made implicitly every 
time we teach. By teaching again as we taught before, we are saying, "em-
phasize the theory; applications will take care of themselves, somehow, la te r . " 

Answering the questions may require a little background reading on our 
part , perhaps preparing a ditto or a xerox from some text, or putting a ref-
erence on reserve in the library. But even the busiest instructor can find the 
t ime to do at least a little in this direction. We need not wait for textbooks 
to make the changes for us. The Monthly, for instance, in the last few years 
has presented many attractive topics. 

A student who takes even a pre-college algebra course with us should 
know—during the course—the answer to the question, "Why would anyone 
ever have to solve a quadrat ic equat ion ," even though he may have been 
trained not to ask it. A biology or economics student who takes a calculus 
course should see at least one convincing example tha t relates calculus to 
his major. Professors in these fields have remarked that even one example 
can go a long way in sustaining such a student throughout the course. An 
upper-division algebra student should be able to answer the simple question, 
" W h a t good are groups?" We should assume that even our own captive 
majors will be handicapped in their studies and teaching by our disregard 
of origins, links, and applications. A textbook author, like an instructor, is 
a public-relations representative of the mathematical community. He—or 
she—faces analogous questions: "Will a student reading my book get a fair 
idea of the significance of the mathematics I present? Have I done all I can 
to relate theory and practice? Must a student go on to the next course in 
order to appreciate the course that my book serves?" 

The mathematical community, threatened in a way that would astonish 
Bishop Berkeley, is trying to cultivate a better public image. It even assigned 
one of its members , for one year, to get our message into the media. But 
the classroom and the text, through which we reach millions of students 
day after day, challenge each of us to convey a balanced picture of mathe-
matics, showing its intrinsic beauty and vitality but also its diverse and fre-
quently unexpected applications in the mathematical realm and in the real 
world. No major curriculum overhaul may be needed to accomplish this task. 
But we will, as individuals, have to admit our bias, nurtured in our training, 
and change our habits . May the reformation last long after the present job 
crisis passes. 

But when we make changes in our teaching, let us not lose sight of a 
crucial function of mathematics: its value in developing clear and logical 
thinking. Perhaps the following words may remind our students and our-
selves of this quality in our discipline. Conrad Hilton in ([1], pp . 63-64) 
observed: 

"I'm not out to convince anyone that calculus, or even algebra and ge-
ometry, are necessities in the hotel business. But I will argue long and 
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loud that they are not useless ornaments pinned onto an average man's 
education. For me, at any rate, the ability to formulate quickly, to resolve 
any problem into its simplest, clearest form, has been exceedingly use-
ful. It is true that you do not use algebraic formulae but in those three 
small brick buildings at [my college] Socorro I found higher mathematics 
the best possible exercise for developing the mental muscles necessary to 
this process. 

In later years I was to be faced with large financial problems, enormous 
business deals with as many ramifications as an octopus has arms, where 
bankers, lawyers, consultants, all threw in their particular bit of informa-
tion. It is always necessary to listen carefully to the powwow, but in the 
end someone has to put them all together, see the actual problem for 
what it is, and make a decision—come up with an answer. A thorough 
training in the mental disciplines of mathematics precludes any tendency 
to be fuzzy, to be misled by red herrings, and I can only believe that my 
two years at the School of Mines helped me to see quickly what the actual 
problem was—and where the problem is, the answer is. Any time you have 
two times two and know it, you are bound to have four." 

Confident but not dogmatic, we will find that applications, judiciously 
chosen, will enrich our classes and broaden our own perspectives. 
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APPLICATIONS TO THE PHYSICAL SCIENCES 

Α. B. Willcox 

Have you heard the one about how calculus helps you cough? No? I'll 
tell it to you. 

Picture your lungs as a balloon inside your rib cage; a balloon within a 
balloon so to speak. Your bronchi and trachea are like a tube connecting 
the inner balloon, your lungs, with the outside world. When you cough 
your rib cage contracts rapidly, sharply increasing the pressure inside. This 
pressure, creating an equal pressure inside the inner balloon, causes air to 
be expelled rapidly through bronchi and trachea to the outside—in a manner 
occasionally disturbing to your immediate neighbor. This is a cough. Now, 
a certain part of the tube connecting lungs to the outside is elastic. Let us 
call this elastic portion the bronchi. Tha t same pressure which is expelling 
the air from your lungs is tending to collapse the soft bronchial tube, thus 
constricting the outward flow of air. Nature therefore seems to be working 
against itself. The pressure within your rib cage simultaneously drives air 
out of your lungs and chokes off the outward flow. How is it, then, tha t you 
are able to work up a good cough? How inefficient of nature . 

Perhaps a mathematical model of the mechanism of a cough will help. 
Let the coughing pressure within the lungs be Ρ (actually, the pressure dif-
ferential, but let us assume 0 pressure in the outside atmosphere) and let 
the radius of your bronchi be r. Let the normal, or rest, radius of the bron-
chi be ro and let ν be the velocity of the air flow through bronchi during the 
cough. In order to construct a mathematical model we must make some as-
sumptions about the nature of reality. If the model is to be useful they had 
better be reasonable assumptions. In this case it seems reasonable to assume 
that the bronchi are elastic, within a range of distortion, and that the air flow 
through the bronchi is that of a perfect fluid through a cylindrical tube. 
Under these assumptions, physicists tell us that the distortion in the radius 
from rest, that is ro - r , is proportional to the pressure Ρ and that the ve-
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locity of flow is proportional to both Ρ and the square of the radius. From 
the resulting two equations in P, r, and v, we may eliminate P. ending up 
with an equation of the form 

ν = k(r0r
2 - r3), 

where k is a combination of the two proportionality constants. 
Now ask your calculus students the conditions under which the velocity 

of air flow is maximized. Even the slow students will tell you that ν is maximum 
when r = 2ro /3 . X-ray observation confirms that during a cough your bron-
chi are indeed collapsed by about a third in radius. Thus , we learn from this 
model that nature is not at all inefficient. The purpose of a cough, after all, 
is to create a high velocity air flow through bronchi and trachea in order to 
dislodge and expel some foreign body. Despite your bumbling nature you seem 
to be able to do the best possible job of it. And without calculus you would 
go through life ignorant of your accomplishments! 

Now that I have your undivided attention, let me acknowledge and at tempt 
to engage my assigned topic in this panel discussion. We will return to 
COUGHING W I T H CALCULUS shortly. Actually, without admitt ing it to 
the organizers of the panel, I have planned from the beginning to take 
great liberties with my topic. I will make a try for legitimacy by returning 
to the special role of the physical sciences, but my strongest opinions 
about the role of applications in the teaching of mathematics to under-
graduates are in no sense restricted to one field of application. 

I can perhaps best illustrate what is on my mind by describing how one 
of my favorite quotable quotes has fallen from grace. I have long since for-
gotten the source, but about 20 years ago I was first amused, then pleased, 
then more profoundly influenced by a statement attributed to a contem-
porary: "There is no applied mathematics, only applied mathemat ic ians ." 
Trite, perhaps, but I adopted it as a sort of personal creed. I still accept it, 
but lately it has lost some of its luster. It needs to be updated. All creeds 
need periodic rejuvenation because as individuals we accept them according 
to the private meanings we read into them. Times change, and with them 
our perceptions. A new message has lately surfaced in this quotable quote 
that may always have been there but was submerged by my sympathetic 
vibrations. It seems to suggest that the mathematical community is divided 
into disjoint sets; pure mathematicians and applied mathematicians. Well, 
it just isn't so, and I can live no longer with the tarnished creed. It must 
be changed. I am not very good at producing aphorisms, but if I had to dis-
till my present belief into a few words I would come up with something like 
this: "There is no applied mathematics, there are no applied mathemati-
cians, there are no pure mathematicians, only mathematics and mathe-
mat ic ians ." 

Some of us do mathematics by choice, others prefer to use mathematics, 
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but most mathematicians have mixed tastes. Show me the "appl ied" math-
ematician who does not often delight in the pristine beauty of the abstract 
mathematics he uses to advance his understanding of problems in the real 
world. Show me the " p u r e " mathematician who isn't at least occasionally 
fascinated to see tne pat terns and relationships he deals with in abstraction 
arising in the real world. Yes, I know, you can produce examples of the 
pure and the purely impure; every spectrum has its extremes. But mathe-
maticians spread all across the rainbow and, I daresay, in something like a 
normal distribution. And with mathematicians ' tastes, so goes mathematics . 

Our discipline, like all disciplines, is an island, in a sense self-contained. 
But it is not isolated. Bridges join our island to other islands in the sea. 
Many fields depend heavily on mathematics. Mathematics is itself abso-
lutely dependent on the bridges joining it to these other fields. Traffic on 
these bridges is two-way, carrying indispensable tools for organizing ideas 
and reaching conclusions in one direction and a disorganized mass of observed 
data in the other. The tools help society; the mass of data contains hidden 
patterns that stimulate and direct the creative imagination of the mathe-
matician. Mathematics thus lives in a healthy symbiosis with the other disci-
plines. 

If our colleges and universities are to train students in living mathe-
matics, not the encrusted tracks we mathematicians leave as we wander 
about our island, then this symbiosis must enter the classroom. Students 
should be led to explore not only the island mathematics, bu t also the 
bridges linking it to other islands. 

This brings me at last to my assigned topic. These bridges are of course 
applications of mathematics to other disciplines. When applications can be 
found at the appropriate level and involving the appropriate mathematics , 
they should be explored in the classroom with enthusiasm on the same intel-
lectual level as the mathematics itself. I am convinced that if we do not 
recognize this imperative we will raise a new generation of provincial is-
landers and start mathematics on the lonely road to isolation and eventual 
decay. 

The bridges we use in the classroom are, of course, miniatures of the 
great bridges that supply tools and ideas for most of the intellectual world 
and bring stimulation and direction to mathematics. How does one select 
these classroom bridges? I will offer several guiding principles tha t may be 
helpful to undergraduate teachers. They constitute the most concise descrip-
tion of an effective classroom application that I have been able to devise. 

1. A classroom application must be interesting to the teacher and to the 
student. This is a subjective criterion not independent of the other guide-
lines I will list. It is also a perfectly obvious one but it is an essential guide-
line. Your students will not learn if you put them to sleep. I mention the 
teacher first because the excitement must begin with the instructor. Wha t 
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you find dull and unimportant usually, if not always, is perceived by your stu-
dents to be dull and unimportant . You must have faith that the reverse is also 
true; what you find fascinating will excite your students. There are many 
useful applications that are dull reading by any standards. You can recog-
nize them. Avoid them. The most effective applications contain an element 
of surprise or a moment of enlightenment. The object of application of math-
ematics is discovery of something new about one of the islands it touches. 

2. A classroom application need not itself make an immediately useful 
contribution to another field, but it should clearly illustrate the potential 
for transmitting significant ideas to that field or to mathematics. The spec-
ific problem and the particular mathematical model may be insignificant 
and oversimplified, but they ought, at the same t ime, to suggest and illus-
trate a useful class of serious application. Your students are intelligent 
enough to extrapolate beyond the walls of your classroom. You should be 
careful not to claim too much for the specific example you use, but don' t 
be overly modest either in describing the potential of related applications. 

The bridge to the outskirts of physiology which I described in my open-
ing remarks is a case in point. I hope you will agree that it satisfies the 
first guideline. It should capture the interest of the students. At least I 
find it interesting, partly because it is unusual and partly because it can be 
presented so as to provide a mild surprise at the end. Nature is efficient 
after all! The application is far too simplified to be really serious, perhaps. 
One can hardly imagine a physiologist exclaiming " E u r e k a " as he sets the 
derivative equal to 0 and examines the solution. But it does illustrate a 
medium for using mathematics to help scientists understand the mechanics 
of the human body, and it may therefore sensitize the student to some 
emerging bridges to serious mathematical biology. 

3 . A classroom bridge should touch some part of a student's home territory. 
A bridge is of no use to a person who cannot reach it. The application must 
pertain to a problem tha t the student can understand and will recognize as 
at least marginally part of his or her world of experience. This may sound 
a bit restrictive, given the diversity of many undergraduate classes. If it is 
not given a liberal interpretation it may exclude many of your favorite ap-
plications. But don't underestimate the breadth of your students ' worlds. 
They extend almost to the limits of their imaginations which, you will agree, 
are precocious. Most students know a little about their own bodies, for 
example, most know small bits of elementary physics, and all have coughed. 

This guideline gives me the opportunity to complete my assignment to 
comment on the special role of applications to the physical sciences. There 
are many rapidly emerging areas of applications of mathematics in a wide 
range of fields—social, political, psychological, economic, and many others— 
bearing on problems of great contemporary societal importance. These 
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should be represented in the classroom if for no other reason than tha t they 
command instant attention from the students. However, physical ideas 
such as velocity, acceleration, energy, or momentum, are par t of the uni-
versal experience of living, and therefore applications to the physical sciences 
will probably always be preeminent in the teaching of most mathematical 
subjects, particularly those in the analysis core. It was my good fortune to 
participate in an interdisciplinary calculus-physics course taught to freshmen 
at Amherst College for 15 years in the 1950s and early 60s. Tha t was a long 
time ago and much water has gone over the dam since that course was 
swept away in a flood of curriculum revision in about 1965. But the excite-
ment of that rich introduction to the interplay between mathematics and 
physics haunts me to this day. Anyone who has traveled in an automobile 
or plane, watched a rocket rise majestically from its pad , seen earth satellites 
of more than the green cheese variety, witnessed a space walk, seen the 
moon close up or the earth from far away, can appreciate the ideas of veloc-
ity, acceleration, momentum, kinetic energy; can appreciate Newton's laws 
of motion; can see Kepler's laws of planetary motion at work in our own 
back yard; can understand escape velocity. The ideas have been constantly 
in the newspapers for two decades. Within the limits of t ime, all of these 
ideas belong in a calculus course, both to illustrate the power of mathe-
matics and also to motivate and develop the mathematical ideas them-
selves. The second purpose is as important as the first, and the observa-
tion brings me to my fourth and final guideline. 

4. A classroom bridge can be equally useful traveled either way. This is 
why I wish we had a better word than "appl icat ion." "Applicat ion" suggests 
the use of the power of mathematics to solve problems and organize ideas 
in other fields. This process is of the greatest importance to mankind, of 
course, but equally important—for mankind as well as for our little island— 
is the flow of ideas in the other direction. Tha t is why I keep referring to 
"br idges ." Throughout history mathematics has been stimulated and, to a 
large extent, directed by its contact with other fields. Without this contin-
ual commerce with other islands, mathematics, like any single discipline, 
will degenerate into a complex game, with rules becoming too complicated 
and demanding for any but the professional player and too technical to 
attract even the casual spectator. Mathematical ideas do not spring inde-
pendently into the minds of mathematicians. They are extracted, or abstrac-
ted, from existing patterns and ideas, often originating outside of mathe-
matics. Ideas should enter the classroom the same way, by a process of 
abstraction from something meaningful to the students. In other words, 
every mathematical idea should be approached along a bridge from where-
ever the student is. A large number of applications you use in your class-
room—perhaps half of them—should be selected for the light they shed on 
mathematics. 
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The importance of this guideline was driven home to me recently by the 
following experience. A good friend wrote in a state of high dudgeon about 
some curricular materials we had been discussing related to the mean value 
theorem. The object of his scorn was an application of the mean value 
theorem to prove that a motorist who traveled between two particular points 
in a particular length of time must certainly have exceeded the speed limit 
at some time during the t r ip . " W h a t a travesty," growled my friend—I 
paraphrase his remarks. "For reputable curricular materials to suggest that 
a person reach for the mean value theorem to argue such a point is an intel-
lectual fraud. There are many more natural and more intuitive ways to 
argue that if an object's velocity is smaller than its average velocity some of 
the t ime during a trip then its velocity must be greater than the average at 
some other t ime. The mean value theorem was invented for far nobler pur-
poses. Such nonsense will portray elegant and powerful mathematics as a 
paper t iger ." 

His point is well taken, and I partly agree with him. But in another sense 
I completely disagree. If the "appl icat ion," which I would prefer to call a 
"real world connection," is presented properly, it has a useful place in any 
t reatment of the mean value theorem. What does the theorem state, after 
all? It states that the average velocity of an object must be attained at some 
point during the t r ip. At some t ime, the instantaneous velocity must equal the 
average velocity. What could be more simple, more easily remembered. The 
analytical statement of the mean value theorem is a mess of technical jargon 
to the average student until he has lived with it for a while, but the speed-
ing motorist will not quickly be forgotten. The statement about velocities to 
which this episode leads is natural and intuitive, and it tells the story of the 
mean value theorem at least as accurately as the familiar one about chords 
and tangents. The student who has discovered the theorem in such a famil-
iar context will consider it a friend and will be well on the way to under-
standing. Let the speeding motorist introduce the mean value theorem in 
your classroom, don't ask him to justify it. 

I might say, in further recognition of my assigned topic, tha t because of 
the traditional close ties between mathematics and the physical sciences, 
you will probably find a majority of such "motivating br idges" leading in 
this direction. We certainly found in the Amherst interdisciplinary course 
that with minor adjustments in the arrangement of the calculus material 
we always had significant problems from physics ready at hand to intro-
duce each new calculus concept as it came along. However, I expect to see 
this center of gravity moving in the next decade toward some of the newer 
areas of application. There are already some exciting examples from these 
areas, as our next speaker will undoubtedly point out. 

In my remarks today I have almost totally ignored most of the hard ques-
tions concerning the introduction of more applications into the under-
graduate curriculum. Where does one find them? Where does one find the 
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t ime for them in the busy academic calendar? Does one give up some actual 
mathematics in order to present more applications? Wha t role should our 
academic colleagues in other disciplines play in the selection and presenta-
tion o f applications of mathematics? I've neglected these questions partly 
because of the nagging of the clock and partly because of the limitations on 
my own competence. I a m hardly competent to answer some of these hard 
questions of implementation, and I am sure that if I were transplanted into 
the classroom today I would be as perplexed by them as any of you. But 
my ignorance does not indicate that answers cannot be found showing the 
way to a healthy mix of theory and application in our undergraduate cur-
riculum. I think they will be found, you will find them because they must 
be found. 





DNA COUNTS, PESTICIDE PROJECTIONS, AND 
VEHICULAR VECTORS: 
APPLICATIONS OF UNDERGRADUATE 
MATHEMATICS 

Fred S. Roberts 

1. Introduction. Imagine the mathematician of 1976, dressed in a lab 
coat, counting DNA molecules. In a swamp off campus, a colleague is 
projecting levels of pesticides. The chairman of the math depar tment is 
standing at the corner of Fifth and Main, vectoring vehicles through the 
rush hour traffic. 

Is it possible that these people are doing mathematics? Of course not . 
The dress and the setting are not appropriate. But mathematicians are 
increasingly interested in applying the tools of their t rade toward the solu-
tion of problems of society. Among those societal problems which mathe-
maticians (and non-mathematicians using mathematical tools) are attack-
ing are problems involving energy, transportation, pollution, and health 
care delivery. I would like to argue, by considering the mathematics of 
DNA counts, pesticide projections, and vehicular vectors, that the ex-
panding horizons of mathematical applications have significant implica-
tions for undergraduate mathematics. 

The mathematics which is used most frequently in societal applications 
is strikingly simple. There are several reasons for this. First, the imprecise 
nature of societal problems: societal problems often involve hard-to-quantify, 
imprecise relationships, and the simplest types of models are the most 
appropriate for describing these relationships. Second, the complexities of 
societal problems: these problems tend to involve many variables, and 
quickly lead to extremely difficult mathematical problems unless major 
simplifying assumptions are made . Thus , by necessity, mathematical treat-
ments are vastly oversimplified. 

Of course, it is incumbent upon modern mathematics to develop tools 
and new types of mathematical techniques which are relevant to these 
problems of society. However, that is not my main point. My main point is 
that these observations have implications for undergraduate mathematics 
education. 
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2. Implications for undergraduate mathematics. Three of the implica-
tions for undergraduate education are the following. First, mathematical 
techniques, even the most elementary ones, can cast light on a real-world 
phenomenon. Second, problems with no "n ice" solutions should be brought 
into the classroom. Third, mathematical problems, simple to state but at 
the frontier of modern research, can be brought into the classroom. I will 
illustrate each of these points with an example. All three examples are 
relevant to an elementary finite math course. They could obviously be used 
in a probability course, in a modelling course, etc. 

3. DNA counts. Mathematical techniques, even the most elementary 
ones, can cast light on a real-world phenomenon. To illustrate this first 
point, let us consider the phenomenon of the vast complexity of na ture . 
This is not exactly a societal problem, but it is related to some important 
ones such as social decisions involving eugenics, and environmental deci-
sions involving the impact of policies which could cut down on diversity in 
an ecosystem. 

The simple explanation of the complexity phenomenon, on an intuitive 
level, involves nothing more than the multiplication rule: if something can 
happen in nx ways, and for each of these a second can happen in n2 ways, 
and for each of these . . . , then the sequence can happen in η , χ n2 x . . . 
ways. 

Genetic information is encoded in the DNA molecule. DNA is a chain of 
chemicals (called nucleotides), each of which is made up of a phosphate, a 
sugar, and one of four bases. The important genetic information is con-
tained in the sequence of bases. Thus , DNA can be thought of as a chain 
each link of which is one of the four bases Thymine (T), Cytosine (C), 
Adenine (A), and Guanine (G). A typical (portion of a) DNA chain could 
be represented as ATTAGGCGCTA. 

We begin by asking how many 2-element DNA chains there are . The 
answer is 4 x 4 = 4 2 = 16, by the multiplication rule. How many 3-
element chains are there? There are of course 4 3 or 64. How many chains 
of 100 elements? There are 4 1 0 0 . 

To illustrate the power of just 4 bases to encode genetic information, let 
us ask what a typical DNA chain is in length. In a chicken, there are 5 x 
10 1 9 bases per DNA chain. That means that there are 4 s χ 1 0 , 9 possible DNA 
chains. Now it is simple to estimate that 4 5 x l ° 1 9 > 1 0 3 x l 0 \ and so we see 
that there are more possible DNA chains in a chicken than one followed by 
3 x 10 9 zeroes! Similar information for other organisms is contained in 
Table 1. The reader will quickly see the amazing number of possible DNA 
chains. It is not surprising, then, to see such variety in nature .* The simplest 
mathematical technique has illuminated this point. 

•More detailed discussion of this example and the next can be found in Mosimann [1]. The 
author thanks Professor Helen Marcus-Roberts for introducing him to these two examples. 
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Table 1. Lengths of DNA Chains 

Organism # bases per DNA chain # possible chains 

chicken 
mouse 
guinea pig 
human 

5 χ 1 0 1 9 

1.3 x 1 0 1 0 

1.7 χ 1 0 1 0 

2.1 χ 1 0 1 0 

4 S x l O | ( , > J Q 3 X 1 0 9 

4 l . 3 x l 0 , 0 > ( Q 7 . 8 X I 0 9 

4 l . 7 x 1 0 L 0 > | Q l . 0 2 x 1 0 1 0 

4 2 . 1 x l 0 , 0 > | Q l . 2 6 x l 0 1 0 

4. Pesticide projections. The second implication for undergraduate 
mathematics education which I would like to illustrate with an example is 
that problems with no "n ice" solutions should be brought into the class-
room. 

Many "modern" uses of mathematics involve aids in making decisions. 
Mathematical tools are used to build models which forecast or project the 
effects of certain activities, the impacts of certain policies, etc. A typical 
place where such aids can be useful is in decisionmaking about pesticides 
or other chemicals which enter the environment. Pesticides such as D D T 
are especially dangerous because of their longevity: they stay in the eco-
system for a long time after being introduced. How could we project the 
relative longevity of two different pesticides? 

There are obviously many factors relevant to the flow of a molecule 
through an ecosystem. Probably the most useful model of this flow would 
involve some understanding of why and how the molecule moves from one 
part of an ecosystem to another. But the mechanism behind this movement 
is not well understood. 

I would like to argue that one can gain some insight into the relative 
longevity of different substances in ecosystems by making rather significant 
simplifying assumptions. I shall build a very simple model. In the model, an 
ecosystem will be thought of as having various states. Following Mosimann 
[1], let us deal with a pasture ecosystem, and assume that there are four 
states: soil, grass, cattle, and "outs ide ." Once a D D T molecule* is in one 
of these states, we assume it can do one of several things: stay there, or 
pass on to another of the states. The possibilities are shown in Figure 1. 
We see that once the molecule is in the soil, for example, it can either stay 
in the soil, be absorbed by the grass, or erode out of the ecosystem. Once 
a molecule of D D T is outside the ecosystem, we assume that it stays out-
side from then on. 

We look in on the ecosystem every t ime period, say every minute, week, 
or month, or so. Rather than study the mechanism of flow of the molecule 
through the system, we simply ask what is the probability that a molecule 
which was in state x, at one t ime period will be in state JC, the next t ime 

* Mosimann traces a phosphorus molecule, but the principles are the same. 
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Fig. 1. Possible transitions for a DDT molecule in a pasture ecosystem. 

period? (This is of course a conditional probability.) We denote this proba-
bility Pij. Typical probabilities for our example are shown in Table 2, and 
in matrix form in Table 3 . 

Table 2. Probabilities for Pasture Ecosystem 

Pss = .6 PSG = - 3 Psc = 0 Pso = .1 

Pes = .1 PGG = A PGC = · 5 PGO = 0 
Pes = .75 PCG = 0 Pec = -2 Pco = .05 

Pos = 0 POG = 0 Poc = 0 Poo = 1 

Table 3. Probabilities for Pasture Ecosystem in Matrix Form 

To 

s 
S 

" .6 
G 
.3 

C 
0 

0 

.Ρ 
G .1 .4 .5 0 

C .75 0 .2 .05 

Ο s. 0 0 0 1 ^ 
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Using the conditional probabilities p, , , we can calculate various other 
important probabilities. For example, given that the D D T molecule starts 
in the soil, we can calculate the probability that it will be outside the eco-
system after two time periods. This calculation is made using tree diagrams, 
as shown in Figure 2. 

Probability out = .06 + 0 + 0 + .1 = .16. 

Fig. 2. Calculation of the probability that a DDT molecule will be outside of the pasture 
ecosystem after two time periods, given that it starts in the soil. 

A similar computation can be made for pesticides other than D D T , and 
the various probabilities can be compared. The information can be used as 
an aid in decisionmaking. 

Somewhat more complicated questions can be answered if we view this 
model as a Markov chain. Then the state "outs ide" is an absorbing state. 
We can calculate by well-known techniques such values as the expected 
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number of t ime periods before the D D T molecule leaves the system, given 
that it starts in the soil. (The process essentially just involves matrix in-
version.) The result is more sophisticated information about the ecosystem. 
(For details of the computation, and more discussion of this example, see 
Roberts [3].) 

All of this can be done in a finite math course. However, it should not be 
left at that , because students will certainly see the oversimplifications in 
the model. One should now discuss these oversimplifications. For example, 
we are assuming that there are well-defined "s ta tes" in the ecosystem. We 
are assuming tha t the conditional probabilities are t ime-independent and 
independent of the routing the molecule took to get to a particular state 
(assumptions we used implicitly). One should also look at the difficult 
practical question: how would one get the information needed to use the 
model? That is, how would one get the ρϋ? 

The answer to the simplifications is that one has to make simplifying 
assumptions since we don' t understand the mechanisms involved. Moreover, 
bringing in other factors than those considered would make for a rather 
complicated problem. We make simplifying assumptions at an early stage 
of trying to understand a phenomenon. These assumptions have to seem 
"reasonable ," and ours do. Even with such assumptions, the use of the 
model gives us some insight into the passage of pesticides through eco-
systems. Students gain mathematical insight into the relationship between 
assumptions and conclusions. We all learn about how complex the opera-
tion of ecosystems is, and we pinpoint some of the questions which have to 
be asked about ecosystems in the future. 

Answers to the practical question of availability of da ta are often guessed 
at by students. For example, some form of radioactive tracing might work. 
However, it is a good idea to point out in general that a model is only as 
good as one's ability to gather the data the model uses. 

In any case, the main point is this: students should be allowed (indeed, 
encouraged) to think about the difficulties, and about how they might go 
about attacking them. In the process, they will develop mathematical ways 
of thinking, which will make them more careful, more precise, and hope-
fully better decisionmakers in the future. 

5. Vehicular vectors. The third and final implication for undergraduate 
mathematics education which I would like to illustrate is that mathematical 
problems, simple to state but at the frontier of modern research, can be 
brought into the classroom. I would like to illustrate this by means of a 
one-way street problem. A town has a growing traffic congestion and air 
pollution problem. Someone has suggested that traffic would move better, 
and so smog level would improve, if all streets were made one way. But can 
this always be done? And if so, how? 

To answer these questions, let us use graph theory. Assume that currently 
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all streets in the town are two-way. Represent the locations in town as the 
vertices of an (undirected) graph, and draw an edge between two locations 
if and only if they are joined by a two-way street. An example of such a 
graph is shown in Figure 3 . We would like to put an arrow or direction or 
orientation on each edge of this graph. Can this always be done? The 
answer is: of course. Simply put the arrows on at random. Unfortunately, 
this can lead to situations like that shown in Figure 4, which would be a 
fine orientation—for someone owning a parking lot at a\ Vehicles must be 
vectored more intelligently than this. 

d 9 

•4 b 

Fig. 3. A graph representing a two-way street network. 

Fig. 4. A one-way street assignment for the graph of Fig. 3. 

The problem needs to be defined more precisely. We would like to assign 
a direction to each street so that it is possible to get from any location to 
any other location. In the language of graph theory, we would like to orient 
each edge of the undirected graph so as to obtain a strongly connected 
directed graph as a result. Of course this can be done for the graph of 
Figure 3 . A strongly connected one-way street assignment (orientation) is 
shown in Figure 5. However, such an assignment does not exist for every 
undirected graph. Figure 6 shows a graph which has no such assignment. 
Certainly the original graph must be connected. Figure 7 shows a con-
nected graph with no strongly connected one-way street assignment. (What-
ever direction is given the edge a leads to trouble. Either it is not possible 
to get back from b to a, or it is not possible to get back from a tob.) Figure 
8 shows a similar example. 

The edge a of Figures 7 and 8 has the property that its removal dis-
connects the original graph. Such an edge a in a connected graph is called 
a bridge. If a graph G has a strongly connected one-way street assignment, 
then clearly G must be connected and have no bridges. The following 
theorem was proved by Robbins [ 2 ] : 
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Fig. 5. A strongly connected one-way street assignment for the graph of Fig. 3. 

Fig. 6. A graph with no strongly connected one-way street assignment. 

a b 

Fig. 7. A connected graph with no strongly connected one-way street assignment. 

* * » * 
Fig. 8. Another connected graph with no strongly connected one-way street assignment. 

Theorem. A graph G has a strongly connected one-way street assignment 

if and only if G is connected and has no bridges. 

Robbins' Theorem answers the question of when a one-way street assign-
ment with the desired property exists. But it does not tell how to find such 
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an assignment. Along with this existence theorem, however, goes a simple 
procedure for finding one-way street assignments. The procedure is de-
scribed in Roberts [3]. 

' i ι
 1 

a b 

1 • « ' 

' 1 ι 1 

' I 

' 1 

1 » 

ι 1 

> » 1 

Fig. 9. An inefficient one-way street assignment. 

There is a serious problem with the existing procedure for finding one-
way street assignments. It leads to such street networks as that shown in 
Figure 9. A person living at location a who works at location b is very 
unhappy with this assignment! He has to drive a long distance. The assign-
ment shown is inefficient in some sense. One wants a precise definition 
of efficient one-way street assignment, theorems about when such assign-
ments exist, and procedures for finding them. Not much is known about 
these problems, and even for the simplest definitions of efficient, for ex-
ample involving some notion of minimizing average or maximum distance 
travelled, the solution of these problems is not straightforward. Thus , a 
simple real-world question has quickly led to the frontiers of mathematical 
knowledge. 

6. Conclusion. In conclusion, modern problems of society provide ex-
citing opportunities to use mathematics. I think that a major goal of mathe-
matical education is to train a large number of future decisionmakers to 
make intelligent decisions, both public ones and private ones. We can do 
this by bringing in real-world problems and realistic applications of mathe-
matics into existing courses. Not all of these problems should have satis-
factory solutions, nor should they all be neat, clean, and concise. Indeed, 
often more can be learned from problems without neat solutions. Even 
without perfectly satisfactory solutions, one can illustrate the power of 
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mathematical thinking, and one can find an opportunity to introduce 

beautiful mathematical results, with a point. 
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