Contents

Foreword: Looking Backward and Moving Forward in Undergraduate Life Science		
Quantitative Education		vii
Louis J. Gross		
F	Foreword: An Invitation to BIO SIGMAA Eric Marland Preface General Introduction	
-		
ł		
C		
	Glenn Leader	
Ι	Models	1
1	BioCalc at Illinois J. Jerry Uhl and Judy Holdener	5
	A one-semester biocalculus course at a large university, with emphasis on conceptual learning facilitated by a computer algebra system	
2	Biocalculus at Benedictine University <i>Timothy D. Comar</i>	17
	A two-semester biocalculus sequence at a small college	
3	Implementation of First Year Biomath Courses at the Ohio State University Laura Kubatko, Janet Best, Tony Nance, and Yuan Lou	25
	A one-year sequence of biocalculus plus statistics at a large university	
4	Teaching Calculus, Probability, and Statistics to Undergraduate Life Science Majors: A Unified Approach Frederick R. Adler	33
	A one-year sequence of mixed topics designed for biology students	
5	The First Year of Calculus and Statistics at Macalester College Dan Flath, Tom Halverson, Danny Kaplan, and Karen Saxe	39
	A redesigned introductory sequence for all students	
6	Biology in Mathematics at the University of Richmond Lester Caudill	45
	A two-semester sequence with calculus and advanced topics	
7	A Terminal Post-Calculus-I Mathematics Course for Biology Students Glenn Ledder	51
	Mathematical modeling, probability, and dynamical systems for students with a Calculus I background	

Contents

8	Modeling Nature and the Nature of Modeling—an Integrative Modeling Approach Claudia Neuhauser	61
	Dynamical systems, partial differential equations, and stochastic processes for students with a Calculus I background, with emphasis on modeling in Excel and Matlab	
9	Mathematical Biology and Computational Algebra at the Sophomore Level Rohan Attele and Dan Hrozencik	65
	Computational linear algebra with student research projects	
10	An Interdisciplinary Research Course in Theoretical Ecology for Young Undergraduates Glenn Ledder, Brigitte Tenhumberg, and G. Travis Adams	69
	A research-driven course focusing on connections between theoretical models and experimental data	
11	An Interdisciplinary Course, Textbook, and Laboratory Manual in Biomathematics with Emphasis on Current Biomedical Research	83
	A special topics course on biomedical research	
	A special topics course on biomedical research	
12	Teaching Bioinformatics in a Mathematics Department Steven Deckelman	89
	A mathematically-oriented bioinformatics program and its core capstone course	
13	SYMBIOSIS: An Integration of Biology, Math and Statistics at the Freshman Level: Walking Together Instead of on Opposite Sides of the Street Karl H. Joplin, Edith Seier, Anant Godbole, Michel Helfgott, Istvan Karsai, Darrell Moore, and Hugh A. Miller, III	97
	A complex interdisciplinary freshman curriculum	
Π	Processes	105
14	Science One: Integrating Mathematical Biology into a First-Year Program Mark Mac Lean	109
	Designing and maintaining a year-long team-taught interdisciplinary curriculum at a large institution	
15	Planning for the Long Term <i>Meredith L. Greer</i>	115
	Retooling a course to meet changing needs and changing personnel	
16	Some Lessons from Fifteen Years of Educational Initiatives at the Interface between Mathematics and Biology: The Entry-Level Course Louis J. Gross	121
	Getting a department to embrace a course	
17	A "Wet-Lab" Calculus for the Life Sciences James L. Cornette, Gail B. Johnston, Ralph A. Ackerman, and Brin A. Keller	127
	A cautionary tale about a project that died from lack of institutional support	
18	Creating an Interdisciplinary Research Course in Mathematical Biology <i>Glenn Ledder and Brigitte Tenhumberg</i>	133
	Advice on creating interdisciplinary team-taught courses	

xii

Co	intents	xiii
19	Bioinformatics: An Example of a Cooperative Learning Course Namyong Lee and Ernest Boyd	139
	A biology/mathematics/computer science course at a smaller MS-level institution	
20	Integrating Statistics and General Biology I in a Learning Community <i>William Ardis and Sukanya Subramanian</i>	143
	Using learning communities to connect biology with statistics	
21	Constructing an Undergraduate BioMath Curriculum at a Large University: Developing First Year Biomath Courses at The Ohio State University <i>Tony Nance and Laura Kubatko</i>	149
	Curriculum reform at a very large institution	
22	Initial Steps Towards an Integration of Qualitative Thinking into the Teaching of Biology at a Large Public University <i>Carole L. Hom, Eric V. Leaver, and Martin Wilson</i>	155
	An introductory biological modeling course offered by a biology department	
II	I Directions	165
23	Integrating Statistics into College Algebra to Meet the Needs of Biology Students Sheldon P. Gordon and Florence Gordon	169
	A call for a college algebra course thought of as pre-statistics rather than pre-calculus	
24	Motivating Calculus with Biology Sebastian J. Schreiber	177
	Ideas for introducing more biology and biological modeling into mathematics courses	
25	Computational Systems Biology: Discrete Models of Gene Regulation Networks Ana Martins, Paola Vera-Licona, and Reinhard Laubenbacher	189
	Using Boolean network analysis to model complex systems in molecular biology	
26	Creating Quantitative Biologists: The Immediate Future of SYMBIOSIS Darrell Moore, Karl H. Joplin, Istvan Karsai, and Hugh A. Miller III	201
	Making introductory biology courses that have more quantitative content and focus more on biological thinking than biological facts	
	About the Editors	207