
Just by looking at the Sierpinski triangle, we can read 

off the rules of the game we played to produce it. 

CHAOS RULES! 
Robert L. Devaney 
Boston University 

The "Classical" Chaos Game 

The "chaos game" and its multitude of variations provides 
a wonderful opportunity to combine elementary ideas 

from geometry, linear algebra, probability, and topology 
with some quite contemporary mathematics. The easiest chaos 

game to understand is played as follows. Start with three points 
at the vertices of an equilateral triangle. Color one vertex red, 
one green, and one blue. Take a die and color two sides red, 
two sides green, and two sides blue. Then pick any point what 

soever in the triangle; this is the seed. Now roll the die. 

Depending upon which color comes up, move the seed half the 

distance to the similarly colored vertex. Then repeat this pro 

cedure, each time moving the previous point half the distance 

to the vertex whose color turns up when the die is rolled. After 

a dozen rolls, start marking where these points land. 

When you repeat this process many thousands of times, the 

pattern that emerges is a surprise: it is not a "random mess," as 

most first-time players would expect. Rather, the image that 

unfolds is one of the most famous fractals of all, the Sierpinski 

triangle shown in Figure 1. Notice that there are no points in 

the "missing" triangles in this set. This is why we did not plot 
the first few points when we rolled the die. 

Now here is the observation that leads to the geometry: the 

Sierpinski triangle consists of three self-similar pieces, each 

of which is exactly one half the size of the original triangle in 

terms of the lengths of the sides. These are precisely the num 

bers that we used to play the game: three vertices and move 

half the distance to the vertex after each roll. So we can go 
backwards. Just by looking at the Sierpinski triangle, we can 

read off the rules of the game we played to produce it. 

Figure V.The Sierpinski triangle. The original red, green, and 

blue vertices are located at the vertices of this image. 

Figure 2a and 2b: The Sierpinski hexagon and carpet. 

Other Chaos Games 

For a different example of a chaos game, put six points at 

the vertices of a regular hexagon. Number them one through 
six and erase the colors on the die. We change the rules a bit 

here: instead of moving the point half the distance to the 

appropriate vertex after each roll, we now "compress the dis 

tance by a factor of three." By this we mean we move the point 
so that the resulting distance from the moved point to the cho 

sen vertex is one third the original distance. We say that the 

compression ratio for this game is three. 

Again we get a surprise: after rolling the die thousands of 

times the resulting image is a "Sierpinski hexagon" as shown 

in Figure 2a. And again we can go backwards: this image con 

sists of six self-similar pieces, each of which is exactly one 

third the size of the full Sierpinski hexagon?the same num 

bers we used to design the game. By the way, there is much 

more to this picture than meets the eye at first: notice that the 

interior white regions of this figure are all bounded by the well 

known Koch snowflake fractal! 

The Sierpinski triangle and hexagon show that the objects 
that result from playing these chaos games have interesting 

topology. Here is an even more intriguing example of this 

illustration. Play the chaos game with eight vertices: four at the 

corners of a square and four at the midpoints of the sides. 

When a compression ratio of three is used, the result is the 

equally famous Sierpinski carpet shown in Figure 2b. Topolo 

gists know that this object contains a homeomorphic copy of 

every planar, one-dimensional, compact, connected set, no 

matter how complicated that set is. What this means is that, 

roughly speaking, every bounded curve, containing any num 

ber of branch points, as long as the set is one-dimensional, can 

be deformed to fit in inside the Sierpinski carpet. 
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Figure 3a, 3b, and 3c: Sierpinski with rotations. 

Here now is a "reverse surprise" (and also an example that 

does not involve the name Sierpinski). Play the chaos game 
with four vertices at the corners of a square and a compression 
ratio of two. After the previous examples, the result of this 

game is?surprise!?a square. But this is not really a surprise, 
since the square consists of four self-similar subsquares, each 

of which is exactly one half the size of the original (in length 
and width). While the square is not a fractal, it is indeed a self 

similar object. An applet called Fractalina can be used to cre 

ate similar chaos game images. It is available at the Boston 

University Dynamical Systems and Technology website 

(math.bu.edu/DYSYS). 

Fractals 

Clearly, self-similarity is only one component in the defini 

tion of a fractal. A line segment and a square are self-similar 

sets, but they are definitely not fractals. The missing ingredient 
here is fractal dimension: a fractal set must also have fractal 

dimension that exceeds the set's topological dimension. With 
out going into details, topological dimension is the "usual" 

dimension of a set; it is always a nonnegative integer. Fractal 

dimension gives finer information about the roughness or com 

plexity of a set. Sets like the Sierpinski triangle, hexagon, and 

carpet have intricate geometries and therefore have fractal 

dimension larger than one, which is the topological dimension 
of all three. For more details, consult Fractals Everywhere by 

Barnsley, or Fractals: A Toolkit of Dynamics Activities by 
Choate, Devaney, and Foster. Incidentally, many people 
believe that a fractal is a set whose fractal dimension is not an 

integer. This is incorrect: there are many fractals that have inte 

ger fractal dimension. The Sierpinski tetrahedron (a tetrahe 

dral analog of the triangle) has fractal dimension two (but 

topological dimension one). 

Rotations 

Now let's add rotations to the mix. This is where the geom 

etry of transformations becomes more important. Start with the 

vertices of a triangle as in the case of the Sierpinski triangle. 
For the bottom two vertices, the rules are as before: just move 

half the distance to that vertex when that vertex is called. For 
the top vertex, the rule is: first move the point half the distance 
to that vertex, and then rotate the point 90 degrees about the 
vertex in the clockwise direction. The result of this chaos game 
is shown in Figure 3a: note that there are basically three self 
similar pieces in the fractal, each of which is half the size of 
the original, but the top one is rotated by 90 degrees in the 
clockwise direction. Again, as before, we can go backwards 
and determine the rules of the chaos game that produced the 

image. 

Changing the rotation at the top vertex to 180 degrees yields 
the image in Figure 3b. This time, the top self-similar piece is 
rotated 180 degrees. For the fractal in Figure 3c, we rotated 

twenty degrees in the clockwise direction around the lower left 

vertex, twenty degrees in the counterclockwise direction 
around the lower right vertex, and there was no rotation around 
the top vertex. 

Determining the rules of a chaos game that produced a cer 

tain image is not easy. In Figure 4 we give you the opportuni 
ty to try your hand at this. You must determine the number and 
locations of the vertices, the compression ratio, and the rota 

tions involved in each case. 

Another great source of fun is fractal movie-making. Once 

you know how to create a single fractal pattern via the chaos 

game, you can slowly vary some of the rotations, compression 
ratios, or locations of the vertices to create a fractal movie. We 

challenge our students to make a movie that is "beautiful" 
where the underlying rule is hard to figure out. Our students 

often work for hours to make these animations. Of course, 
beautiful here means "with a lot of symmetry," so there really 
is a lot of geometry in this activity. While a magazine may not 

be the best place to display a movie, several frames from the 
movie "Dancing Sierpinski" are displayed in Figure 5. Anoth 
er applet called Fractanimate is available to make these movies 
at the Boston University Dynamical Systems and Technology 
website. A number of fractal movies created by students are 

also posted at this site. 

; i; 2b 2a 3a I Jt 

Figure 4: Challenging chaos game images. 
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Figure 5: How did we produce this fractal "movie" ? 

Probability and Linear Algebra 
Up to now, all of the compression ratios we have used in a 

given chaos game have been the same. When these numbers 

change, it often becomes necessary to change the probability 
of choosing a certain vertex. The reason for this is that if a 

compression ratio at a certain vertex is just slightly larger than 

one, then we need to choose that vertex over and over in suc 

cession in order to fill the entire portion of the fractal corre 

sponding to that vertex. For example, the fractal starfish in Fig 
ure 6 was made with just two vertices, one in the upper left 
corner with compression ratio 5 and one in the center with 

compression ratio 1.04 and a rotation of 38?. We actually 

placed 11 vertices all with the same compression ratios and 

rotations in the center to change the odds of moving toward the 

center vertex. 

All of the chaos games thus far have been specified by giv 

ing just the location of the vertices, compression ratio, and 

rotation. Using linear algebra, we could have specified these 

rules by providing an affine transformation of the form. 

fx^ fl/a 0 Vcos0 -sinflV-T-Xo^ (x0\ 

T[y)( 0 l/aj[sin0 cos0 ){y-y0 j{y0J 
Here (jc0, y0) is the vertex, a > 1 is the compression ratio, and 

6 is the rotation angle. More generally, we could allow any 
affine transformation, provided that the matrix involved is a 

contraction. When we allow this, the output of the chaos game 

produces a much richer collection of fractals, including not 

only fractals from geometry, but also fractals from nature. The 

fractal fern in Figure 7 was produced using just four affine 

transformations which, after some algebraic simplifications, 
are given by 

<;Ho ai.)(;Mo) 
fx\( 0.85 

0.04V^ 
r 0 \ 

T2[y)~{-0.04 0.85j^J 
+ 

lv1.64j 

fx} (0.20 -0.26 Vj^ ( 0 ̂  

r4j=U23 O.22JUH1.6J 
(x\_(-Q.\5 02i\(x\ 

^-0.028^ 
r4UJ~l 0.26 0.24JU 

+ 
1 1-05 J 

and probabilities 0.01, 0.85, 0.07, and 0.07 respectively. 

Some Applications 
Our students never seem to worry about applications of 

these ideas when they see the fascinating shapes that arise 

from the chaos game. Nonetheless there are many ways that 

these are currently being used. One involves data compression. 
Think about how much data we need to feed into the comput 
er to generate the Sierpinski triangle: just three vertices, a com 

pression ratio of two, and the total number of iterations. That 
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Figure 6: The fractal starfish. 

tiny amount of data allows us to store the incredibly compli 
cated set of points making up the fractal. Similarly, to create 

the fern in Figure 7, we input a 2 x 2 matrix, a planar vector, 
and a probability for each rule. That's a total of 28 numbers 

that give the rules of that chaos game. Many other objects from 

nature (trees, clouds, coastlines, etc.) are fractals, and a slight 

ly more sophisticated form of the chaos game allows us to cap 
ture these images as very small data sets. These ideas have 

been used to great advantage in such diverse arenas as digital 

encyclopedias and Hollywood movies to construct and store 

lifelike, fractal images in a very efficient manner. | 

Figure 7: The fractal fern 
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H^^1^^. Fellowships and Assistantships plus Tuition 

The Department of Mathematics at the University of Louisiana at Lafayette offers graduate programs with 
concentrations in applied mathematics, pure mathematics, and statistics. It has Fellowships and Assistantships 
for students seeking a Ph.D. degree. Stipends are $17,000 per fiscal year for a Board of Regents Fellowship 
and up to $12,000 per academic year for an Assistantship. All fellows and assistants receive a waiver of tuition 
and fees, which could bring the level of funding to as much as $26,000 per academic year. Additional sum 
mer support is generally available for teaching assistants. Fellows have priority for low-cost university hous 

ing. Applications for fellowships must be completed by February 15,2005. Although there is no deadline for 

Assistantships, preference will be given to applications received by March 15. High GRE scores (verbal, 
quantitative, and analytical) and outstanding academic achievement are required. Please contact: 

Dr. Nabendu Pal, Graduate Coordinator Telephone: (337) 482-5297 

Department of Mathematics E-mail: math@louisiana.edu 

University of Louisiana at Lafayette Fax: (337) 482-5346 

Lafayette, LA 70504-1010 Web Page: http://www.louisiana.edu/math/ 
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