“I hope that by illustrating—albeit not rigorously—a few of the
applications of math to magnetic resonance, | will convince
some budding mathematicians to become physicians.”
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Why Math Can Contribute More to Medicine Than You Might Think
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Flying Blind

Magnetic resonance imaging, as anybody who’s watched
Grey’s Anatomy knows, is a powerful diagnostic tool. It can
reveal a wealth of information about the body’s structure and
physiology, and is the radiologist’s tool of choice for assessing
many pathologies. This exciting diagnostic tool is an
outgrowth of the quantum mechanics elucidated by great
scientific minds in the preceding century. To cut a long story
very short, the nuclei of atoms that have an odd number of pro-
tons or neutrons will absorb radio frequency energy of a
specific wavelength when they are in a strong magnetic field.
If we pulse them with energy of the proper wavelength, they
will give off an electromagnetic signal; this phenomenon is
called nuclear magnetic resonance. We can measure this sig-
nal, and convert it into an image.

And this is where the mathematician comes in. The signal
that these nuclei give off is not immediately useful. It is ini-
tially measured as a current running through a wire. Convert-
ing this signal into an image requires a good deal of mathe-
matical know-how, involving Fourier transforms and a
nebulous dimension known as K-space—neither of which is
particularly well understood by your average radiologist. In
other words, most of the doctors who are responsible for read-
ing MRI studies know virtually nothing about how the images
are constructed. I venture to say that few other areas of medi-
cine—or any other profession, for that matter—suffer such a
disconnect between the researchers who develop a procedure
and the clinicians who deliver it to patients. As magnetic reso-
nance procedures become more common and complex, this
chasm will be increasingly precipitous.

The contribution of math to radiology does not end once
images are constructed. The simple, grayscale MRI scans,
such as those in Figure 1, are nothing more than raw signal
intensity maps. In other words, they tell us which regions of
the body are giving off the strongest signal in response to the

Figure 1. An MRI image of a healthy male head. This image was
constructed by digitizing and processing the signal associated
with a current in a wire at various points in time.

radio frequency pulse. These signal intensity maps can be
processed to reveal a host of physiological information. At
every level, this image analysis relies on basic mathematical
principles. And again, physicians rarely understand these prin-
ciples.

I hope that by illustrating—albeit not rigorously —a few of
the applications of math to magnetic resonance, I will
convince some budding mathematicians to become physicians.
I also hope that the medical community will more fully
embrace mathematics and actively encourage math students to
enter the biomedical world. In closing, I will briefly touch on
other medical fields that would benefit from a few more
mathematicians.
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Signal to Image: The Fourier Transform, K-space,
and Other Such Fun

When an MRI apparatus (known as an imaging coil)
receives a signal, we measure the current running thorough a
wire. Now, without getting too far into the details, we
determine just where in the body a signal is coming from by
applying what is known in the business as a frequency
encoding gradient. This gradient causes the shape of the signal
function to vary; the stronger the gradient, the more the shape
is altered. By applying linear gradients to a patient along
several axes, we can determine precisely where the signal
originated.

The raw signals that our imaging coil receives are digitized
and placed in a 2-dimensional matrix known as K-space. K-
space is not a terribly complex principle, but it still gives the
willies to less mathematically attuned doctors. To understand
K-space, we must first consider the mathematical beauty of the
Fourier transform.

Consider the normalized Sinc function, given by

Sinc(k) = SR
rk

This function is very common in signal processing, and
should be familiar to anybody with a background in analysis,
electrical engineering, or image processing. An interesting and
useful feature of this function is that its Fourier transform is
the rectangle function.
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Figure 2. The normalized Sinc function shown over the range -4t
to 4. Note that the frequency is initially 2, and progressively
increases. Also, the maximum magnitude is 1, just as the Fourier
transform suggests.
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Figure 3. The 2-dimensional rectangle function and its Fourier
transform.

We think of the domain of f as frequency, and its range as
magnitude. In other words, this function f(x) exists in a world
with frequency on the x-axis and magnitude on the y-axis. So,
the Fourier transform takes us from the time domain (k) to the
frequency domain (x). After applying the transform, the signal
is described as a function of frequency, rather than as a func-
tion of time.

At first, this result appears purely academic. But like so
many things that seem interesting only to theoretical mathe-
maticians, it is actually very useful. You see, the rectangle
function contains all the information necessary to reconstruct
the Sinc function. The rectangle function exactly reflects the
range of periods contained in the Sinc function. In fact, the
relationship is given by 7 = 1/x, where T is the period of a
function and x is the frequency of its Fourier transform. A
quick glance at Figure 2 confirms that the period of the Sinc
function is 2 between —1 and 1, and grows as one moves away
from the origin. Moreover, the magnitude of the rectangle
function equals the maximum magnitude of the Sinc function.

Interestingly, taking the Fourier transform of this function’s
Fourier transform will give us back the original function!
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The power of this result should be apparent.

Let’s consider what happens when we extend this result to
two dimensions. The first panel in Figure 3 shows a two-
dimensional representation of the rectangle function, where
the white regions represent the maximum magnitude (that is,
1) and the black regions represent the minimum magnitude
(which is zero). If we take the Fourier transform of this two-
dimensional function, we arrive in a space that looks like the
second panel. Notice how the magnitude oscillates along the x-
and y-axes.

Now think for a second about the image in Figure 1. Each
pixel in the image falls somewhere on a shading continuum
between black and white; in between lie various shades of
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gray. This is simply a graphical representation of a data matrix
where each pixel lives as a number between zero and 1. The
closer to 1 a number is, the whiter the corresponding pixel will
be. If we take a one-dimensional “strip” from this image, we
will obtain a series of numbers that can be fit to a curve. This
curve will be fairly complex — but it has a direct relation with
its Fourier transform, just as the Sinc function does.

Now, consider taking the Fourier transform of each one-
dimensional strip from Figure 1. It’s not hard to imagine the
resulting one-dimensional Fourier transforms filling a 2-
dimensional space —in fact, this is exactly what we saw a few
moments ago with the 2D rectangle function. Now for the
punch line: the space filled by these Fourier transforms is K-
space. In other words, the 2-dimensional data matrix we obtain
by digitizing the various signal components—which, recall,
are differentiated by the gradient applied to them—is directly
related to the final image we want by a fascinating mathemat-
ical identity.

So, the images of your brain that doctors examine are con-
structed by taking the inverse Fourier transform of a digital
data matrix. Stig Ljunggren and Donald Tweig independently
proved this result in 1983. Since then, it has become the foun-
dation of MR image construction. To understand the latest
advances in scanning technology, you need to know K-space
and the Fourier transform.

Deriving Physiological Parameters from Images:
More Work for the Mathematically Inclined
One nice aspect of magnetic resonance is that it gives us

more than pretty pictures. In many cases, we can derive phys-
iological information from the signal intensity images con-

Figure 4. K-space corresponding to the brain scan in Figure 1.
The image space is the inverse Fourier transform of the data matrix
represented here.

Figure 5. Signal intensity image of rat lungs obtained by venti-
lating airspaces with hyperpolarized 3Helium.

structed in the previous section. Such quantitative, regional
information about an organ can be extraordinarily useful.
However, pulling such information from the images requires a
good deal of mathematical and computing knowledge. The
ceiling on how much data we can extract from MR studies is
ultimately set by researchers’ quantitative skills.

Recent advances in lung imaging have made it possible to
measure regional indicators of pulmonary function. These
regional measurements represent a huge step forward in pul-
monary medicine, which has historically relied on global pul-
monary function tests. Such tests tell us nothing about where
in the lung defects occur or how widespread they are. One
extremely important regional parameter is fractional ventila-
tion, the ratio of gas in a given region exchanged with each
breath.

Without delving too deeply into the physics involved, lung
images like those in Figure 5 are obtained by ventilating the
patient with hyperpolarized gases. It’s not important to under-
stand why we use these special gases. For now, it suffices to
say that signal intensity is proportional to the degree of polar-
ization of the gas and its concentration in a given space.
Together, these two factors determine the net magnetization of
the gas in a region, which in turn determines signal intensity.

Clearly, the concentration depends on how much helium is
able to reach a region with each breath. So, distal regions of
the lung will give off a smaller signal than regions near the tra-
chea; also, pathologies that restrict the airways, such as asth-
ma, will reduce signal. We define the amount of air in a region
that is exchanged with each breath as fraction ventilation, and
express it mathematically as

where V;,, is the volume of fresh gas received per breath, and
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Figure 6. Estimation of fractional ventilation r throughout a rat
lung obtained using the technique described. Note that gas
exchange is significantly more efficient in the trachea than in dis-
tal airways, as we might expect.

V14 1s the volume of old gas that remains in the lung. Helium’s
degree of polarization is affected by several factors, which I
will describe shortly. Combining these two factors and accu-
rately describing a signal in a given region requires some inter-
esting mathematical models.

After a given number of polarized gas inhalations, the
degree of magnetization M of gas in the lungs can be expressed
as a function of fractional ventilation and factors that cause the
nuclear magnetization to degrade. Since signal intensity is
directly linked to this magnetization, we can determine M from
our basic signal intensity images. If fractional ventilation were
the only factor influencing magnetization, it would be given by
the following expression after j breaths:

M()=My-r+M(—=1)-(0=7),

where M, is the polarization in our helium reservoir. However,
there are three other effects that we must account for.

Flip Angle Effect

Whenever we acquire an image, the gas depolarizes to
some extent. The physics behind this phenomenon is well
defined, so it is easily accounted for. There is an imaging
parameter know as the “flip angle,” which is directly related to
the amount of depolarization. When we analyze MRI studies,
we have a priori knowledge of this flip angle, which we des-
ignate .. The effect of image acquisition can be expressed as

-1
eN n(cos o) ,

where N is a constant representing the resolution of the image.
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External Relaxation

The helium gas in our external reservoir is subject to
depolarization, mostly from interactions with the walls of the
container. This depolarization is known to be exponential. If
we let 7 represent the time interval between breaths and 7'y,
represent the interaction between the gas and the container
walls, we can account for external relaxation with the expres-
sion

-7

T
e 1,ext .

This effect has been experimentally characterized.

Oxygen Interaction Effect

Interactions with oxygen cause the helium to depolarize;
the precise nature of the helium-oxygen interaction is readily
available in the chemical literature. This effect, like external
relaxation, will lead to exponential depolarization. If we let
PO, be the partial pressure of oxygen gas in the lungs, we can
model the oxygen interaction effect as

T,.0, = &1 PO,,

where & is a physical constant.

We can combine these terms to build the following recur-
sive model of magnetization buildup in the lungs with succes-
sive breaths:

T

M(j)=Mqy e -r+

[N-ln(cosa)—M]
M@G-1)-(1-r)-e ¢

Notice that if no image is acquired after a breath, a is zero,
and the expression for flip-angle depolarization falls out.

The only term in this model that we don’t know is r. So, we
can solve this equation for r after ventilating the patient with
our hyperpolarized gas. Figure 6 is an estimated ventilation
map obtained using this technique. Although the image dis-
played was obtained from a rat, it is obvious that this informa-
tion could help doctors make diagnoses in human patients.

Similar techniques allow us to assess a plethora of pul-
monary parameters, such as blood perfusion, partial pressure
of oxygen, and the rate of oxygen uptake into the blood. Quan-
titative methods also allow radiologists to study the function of
other organs; for example, methods have been developed to
measure electric activity in the brain in response to various
stimuli. Development and refinement of these image process-
ing techniques requires mathematical knowledge far beyond
that of the average physician.

Some Other Things You Won't See on the MCAT

The medical applications of math are certainly not confined
to radiology, and this discussion has barely scratched the sur-
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face of applications within that field. In addition to magnetic
resonance, radiologists routinely use x-rays, ultrasound,
gamma cameras, positron emission tomography, and comput-
ed tomography to assess pathologies. Math plays some role in
all of these techniques. The latter two modalities acquire infor-
mation at points in a plane that transects the patient, and rather
advanced matrix algebra is required to transform this data into
a useful image.

Developing new tools for processing and analyzing images
requires researchers with a good math background. The excit-
ing field of computer assisted diagnosis (CAD), which uses
computers to analyze images and make diagnoses, may even-
tually produce software that assess images faster and more
accurately than doctors. A young method known as digital
radiography allows x-rays to be computerized, making images
available within seconds of acquisition. This can have tremen-
dous impact when a patient’s life is on the line. I have person-
ally seen the trauma team in the Emergency Department at the
Hospital of the University of Pennsylvania make critical deci-
sions within minutes of a patient’s arrival based on digital radi-
ography information. This would be impossible without mod-
ern computing tools.

You probably know of efforts to decode the human genome.
Genomics is an exciting field with the potential to revolution-
ize medicine, from prevention to treatment. But the human
genome is enormous—it contains about 3 billion molecular
base pairs (the smallest information-containing unit in a cell)
and about 25,000 protein-encoding genes. Without powerful
mathematical tools, culling this dataset for patterns would be
an unthinkable enterprise. But with the aid of powerful com-
puters and good mathematicians, the dark secrets of many
dreadful diseases may soon be known.

There is literally no end to biomedical uses for math. Mod-
els of bacterial growth are little more than first-order differen-
tial equations. Blood flow, muscle activity, and drug uptake
can all be modeled using tools accessible to undergraduate
mathematicians. There are countless ways that math students
can contribute to medicine—but first they must make a com-
mitment to the profession. The medical community does not,
in my opinion, fully acknowledge how much mathematicians
can give. The only way to change that is for good mathemati-
cians to enter medicine and demonstrate what they can do. i

For Further Reading

Students interested in magnetic resonance should find a
copy of MRI: The Basics, by Ray H. Hashemi and William G.
Bradley (Baltimore, MD: Lippincott Williams &Wilkins,
2003). An excellent online resource is www.e-mri.org,
which includes a tutorial of K-space and the Fourier transform.
If your interest was piqued by my discussion of lung imaging
via hyperpolarized gases, I recommend Stephen Kadlecek’s

2002 paper “Magnetic Resonance Imaging with Polarized
Gases” (American Scientist 90, p. 540).
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New MAA Web Pages for Students

The MAA has expanded and re-
worked its collection of web
pages for students. Our goal is
no less than to have the best
collection of pages and links

New Pages Include
« High school students pages,

« Undergraduate students
pages,
« Graduate students pages,

for anyone interested in
mathematics accessible to | * Career pages,
undergraduates. « Conferences links, and

* Summer opportunities pages

Take a look at the pages and
give us some feedback on s

what you like and what you'd £ 3
like to see. :

On facebook now at Student Page for MAA
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