The
Insta

of

bility

If issues are very simple, democratic decisions can
be stable. But even a small amount of complexity
destroys that stability in the most drastic possible

way, and gives ultimate power to anyone who can

control the voting agenda.
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n any society, people with different preferences have to

decide on common courses of action. In a democratic soci-

ety, we ofien do this by voting, usually by majority rule.
When there are many possible courses of action, a decision
may require a sequence of votes—a legislature might vote on
amendments to amendments, then on amendments, then on a
final bill. When this happens, it’s important to understand how
stable the result is. We would like to think that the result of
democratic decision-making reflects “the will of the people.”
If the decision were made again tomorrow by the same people
with the same preferences, but perhaps by a different sequence
of votes, the decision should be the same, or at least approxi-
mately the same.

One way that political scientists have approached this ques-
tion is by building and analyzing mathematical models. I’d
like to show you how one class of models—geometric or “spa-
tial” models—deals with the question of the stability of dem-
ocratic decisions. [ think you’ll find the insights they offer sur-
prising, and perhaps disturbing.

One-dimensional spatial models

The oldest spatial model in politics dates back to the time of
the French Revolution, when radicals sat on the left side of the
Assembly and royalists sat on the right side. Since then, com-
mon political discourse has often represented preferences by
placing voters along a line, with “liberal” voters to the left,
“conservative” voters to the right, and “centrist” voters in
between. For example, Figure 1 shows a one-dimensional spa-
tial model of the U.S. Supreme Court constructed by the Wash-
ington Post by considering how justices voted in twelve key
decisions in 1998. Notice that Justice Kennedy occupies an
important position, in that he is the middle, or median, voter.
He has the swing vote between liberal Justices Souter, Breyer,
Ginsburg and Stevens, and conservative Justices O’Connor,
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FIGURE 1. A one-dimensional spatial model of the U.S. Supreme Court in
1998.

Rehnquist, Thomas and Scalia. We might expect many deci-
sions to be made in accordance with Kennedy'’s preferences.

When voters vote on alternative courses of action, those
alternatives may be able to be positioned along the same con-
tinuum as the voters. For instance, voters might choose among
candidates whose platforms might be liberal or conservative,
or legislators might vote on bills which have liberal or conser-
vative content. In the 1950’s, Anthony Downs proposed that
we analyze voting by assuming that voters and alternatives can
be represented as points on a line, and that in choosing
between alternatives, each voter will vote for the alternative
which is closest to him or her. This is the classical “Downsian”
spatial model of voting.

Let’s see what the Downsian model says about the stability
of voting. For simplicity, we’ll always assume there are an odd
number of voters, so we won’t need to worry about ties. Sup-
pose that the voters in Figure 2 choose between alternatives x
and y. Notice that which alternative will win is entirely deter-
mined by whether the median voter is closer to x or y (so in
Figure 2, y will win). In other words, in any pairwise majority
vote, the alternative closer to the median voter will win. If a
series of alternatives are considered, the one closest to the
median voter will win, and this will be true regardless of the
order in which the alternatives are voted on. The one alterna-



THE INSTABILITY OF DEMOCRATIC DECISIONS

e median voter

PN ) o o X Y o o0 o

<

v

FIGURE 2. The one-dimensional Downsian voting model.

tive which will beat any other alternative is the exact point
occupied by the median voter. This result is known in the polit-
ical science literature as the Median Voter Theorem.

One way to think of this result is to imagine x and y as the
positions of two candidates who can change their positions by
the statements they make during the campaign. If y starts near-
er to the median voter, the first candidate has incentive to
move x to the right to get closer to the median voter. Then the
second candidate might move y to the left to recapture the lead.
We should see the positions of the two candidates converging
towards the center, until there is very little to distinguish
between them. (Of course, there are some practical political
problems. For instance, if a candidate tries to move too far too
fast, voters may question his sincerity. Or if the two candidates
become indistinguishable, there may be incentive for a third
candidate to enter the race taking an extreme position on the
left or right.)

Although we might not like having to choose between two
almost indistiguishable candidates, in many ways the Median
Voter Theorem is reassuring about the nature of democratic
decisions. It says they will be stable and they will be centrist—
maybe not pleasing everyone but not making anyone too

unhappy.

Two-dimensional spatial models

Unfortunately, we know that although democratic decisions
are sometimes centrist, they are not always so. It is also true
that both politicians and voters know that the liberal-conser-
vative continuum is too simplistic to capture preferences over
a broad range of issues. A politician, for example, might
describe herself as “liberal on social issues, but conservative
on economic issues.” Mathematically, the natural way to
model such preferences would be to represent voters as points
not along a line, but in a plane (or a space of three dimensions
or n dimensions, but for this article we’ll stick to two dimen-
sions). Alternatives—bills or candidates——are representated by
points in the same plane, and we retain the Downsian assump-
tion that in a decision between two alternatives, voters will
vote for the closer one.

Surprisingly, the simple change from one dimension to
two—allowing voter preferences to be slightly more com-
plex—has profound consequences for the stability of demo-
cratic decisions. Consider, for example, Figure 3, in which
there are just three voters 4, B, and C who must decide on a
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FIGURE 3. Spatial voting in two dimensions.

budget which will spend a certain amount of money for social
purposes and a certain amount for military protection. If these
voters are asked to decide between bills w and x, voter C will
certainly vote for w, but x is closer than w to both 4 and B. (To
make this clearer in the figure, I have shown arcs of circles
centered at 4 and B, passing through w. Notice that x is inside
both of these arcs.) Hence A4 and B will vote for x, which will
beat w by two votes to one.

So far so good. But now suppose a new budget y is pro-
posed, and our voters must choose between x and y. With the
help of the appropriate circular arcs, you should check that 4
and C will vote for y, so y beats x by two to one. Finally, if z is
paired against y, z will get the votes of B and C and beat y by
two to one. Our small democratic society started with w and by
a series of decisive majority votes, ended up choosing z. This
is a strange outcome, because you can see that the voters
would unanimously prefer w to z. My colleagues in the Beloit
College Academic Senate find this phenomenon familiar. If
you have ever been part of a legislative body, has anything like
this happened to you?

McKelvey's Theorem

Let’s think more carefully about the example in Figure 3. First
of all, since each alternative in the cycle w, x, y, z, w would beat
the previous alternative, none of those alternatives is stable. In
fact, by starting the cycle in different places, we could make any
one of the four alternatives the ultimate winner. The decision of
this society seems to have little to do with the voters’ prefer-
ences, and everything to do with the order in which alternatives
are presented. This phenomenon is known in political science as
the agenda effect. The practical consequence is that “s/he who
controls the agenda, controls the outcome.” In the U.S. House of
Representatives, the most prized committee assignment is to the
Rules Commuittee, which determines the voting agenda.

In Figure 3, a clever agenda controller could lead our voters
from w to z. It is natural to ask where else they could be led.
Political scientist Robert McKelvey published the startling
answer in 1976: they can be led, by a finite sequence of major-
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ity votes, to any point in the plane! In two dimensions, the
agenda effect is absolute.

To prove McKelvey’s Theorem for the situation in Figure 3,
[l start by telling you that I didn’t choose points x, y, and z at
random. The circles through w centered at 4 and B meet at a
second point, outside triangie ABC, which is the reflection of
w in the line 48. To get x, I took that reflection and moved it
slightly in toward the line AB. Similarly, [ got y by reflecting x
in the line AC and moving it in slightly. (In politics, this
maneuver goes by the name of “splitting the winning coali-
tion.”) Finally, z is the reflection of y in the line BC, again
moved in slightly. Of course, there is no reason we need to stop
here: we could iterate the procedure of reflecting in lines 4B,
AC, and BC (always remembering to move in slightly) as many
times as we wish. To see what happens if we do that, we need
a lovely theorem from transformational geometry: The product
of reflections in three sides of a triangle is a glide reflection.
Figure 4 illustrates this result. The glide reflection which is the
product of the three reflections first translates the plane along
vector v and then reflects it across v. The effect of iterating the
sequence of reflections, then, is to iterate a glide reflection.

Figure 4. The product of reflections in three sides of a triangle is a glide
reflection.

The strategy of our agenda controller is now clear. To lead
the voters from w to any chosen point ¢, first iterate the glide
reflection # times to get to a point z, which is farther from all
of the voters than ¢ is. Then propose ¢ as a final option. The
voters should adopt ¢ gratefully and unanimously.

The Plott conditions for stability

For three voters at the vertices of a triangle, there is no stabil-
ity. Every alternative can be beaten by other alternatives, and
in fact every alternative can be reached from every other alter-
native by a finite sequence of majority votes. (See how the
argument above shows that?) But clearly this is a very special,
and simple, configuration. What about other configurations? It
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Figure 5. An unstable voting con- Figure 6. A stable voting configu-
figuration of nine voters. ration of nine voters.

turns out that the conclusion of McKelvey’s Theorem holds
“almost always.” Given any configuration of an odd number of
voters in the plane, define a median line to be a line such that
each of the two regions into which it divides the plane contains
fewer than half the number of voters. Figures 5 and 6 show
some median lines. Notice that any median line must pass
through the position of at least one voter.

The key observation is that given any alternative x, reflect-
ing x across any median line and moving in slightly toward the
median line gives a new point y which beats x under majority
rule. (Can you give a quick proof of this?) Hence if there are
three median lines which do not all pass through the same point,
i.e., form a triangle as in Figure 5, we can use exactly the argu-
ment in the previous section to prove complete instability. Thus
the only case in which instability doesn’t hold is if all median
lines pass through the same point, as in Figure 6. In this case, the
common point must be the location of some voter—the median
voter M—and all lines through M must be median lines. 1f M is
the location of a single voter and we imagine a median line rotat-
ing around M with one half-plane picking up voters as the other
loses voters, we see that whenever a median line contains £
points on one side of M, it must contain exactly & points on the
other side of M, i.e., the configuration must have the kind of
“symmetry” of Figure 6. Configurations of this kind were first
identified by Charles Plott in 1967. (If more than one voter is
focated at M, other configurations are possible.)

A Plott configuration is stable. You can check that, just as in
one dimension, in any vote between two alternatives, the one
which is closer to the median voter M will win, and an alterna-
tive positioned at M will beat any other alternative. In fact, we
can think of the one-dimensional situation as a Plott configura-
tion in which all of the alternatives happen to be positioned on
one line.

Finally, notice that configurations with more than one
median voter or the symmetry of a Plott configuration are
extremely rare, in the sense that if we throw an odd number of
points randomly on the plane, the probability that such a con-
figuration will result is zero. Hence with probability one, a
two-dimensional configuration of an odd number of voters
will have complete instability.

Continued on p. 28.
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acute triangle dissections in [3], problem 32. Question 10 was
first proposed by H. Dudeney in 1908.

[ first learned of the notion of a metric space being “trian-
gle complete” from Tom Sibley’s fascinating article [5]. In it
he shows that R? is not “pyramid complete” when equipped
with the Euclidean metric, but is when given with the taxicab
metric.

The result described in question 12 is known as Napoleon’s
Theorem and the generalization hinted at after its solution is
due to J. Douglas and B. H. Neurmann. See G. Chang and T.
Sederberg’s wonderful text [1], chapter 16, for an enlightening
discussion of this beautiful result.

Question 7 is a variation of Sperner’s famous lemma. All
one needs to ensure the existence of a 1-2-3 triangle is a

labelling scheme that produces an odd number of exterior 1-2
(or 2-3 or 3-1) edges. To see how this lemma leads to the
Brouwer fixed point theorem have a look at Mark Kac and
Stanislaw Ulam’s incredible book [4].

[1] Gengzhe Chang and Thomas Sederberg, Over and Over Again.
The Mathematical Association of America. 1997.

[2] Martin Gardner, Penrose Tiles to Trapdoor Ciphers. W. H. Free-
man and Company, New York, 1989.
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Continued from p. 14.

Morals of this story

The results of our foray into spatial models of voting seem dis-
couraging, perhaps even dismaying, for those who believe in
majority rule as a method of democratic decision-making. If
issues are very simple, in that it makes sense to represent voters’
positions along a line, decisions can be stable. But even a small
amount of complexity destroys that stability in the most drastic
possible way, and gives ultimate power to anyone who can con-
trol the voting agenda.

What should we conclude from this? One possible
response—and one which has sometimes been made by non-
mathematical political scientists—is that this is “only a
model,” with no relation to complex reality. The problem with
this dismissal is that other political scientists recognize real
political behavior in what the model portrays: that different
procedural rules can produce different outcomes, that minori-
ties can propose amendments which split majorities, that con-
trol of the voting agenda can be enormously important.

An extreme response on the other side is that the model has
uncovered a fundamental flaw in democratic society. It shows
that in any society of even moderate complexity, making deci-
sions by majority rule gives power not to the people, but to
professionals who know how to manipulate political proce-
dures to their own advantage.

A more moderate response, and one which has been influ-
ential in political science for the past twenty years, comes from
focusing on the aspect of the model which produces the insta-
bility: the freedom to introduce new alternatives anywhere in
the plane. This line of research asks what kinds of “germane-
ness” rules, parliamentary procedures and voting rules might
best promote stability without limiting in too serious a way the
freedom of voters to propose alternatives.
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For me, a main moral is that mathematical models can
focus ideas, bring new insights, and suggest new lines of
research in the study of important social questions. [l

For Further Reading

A good general introduction to spatial voting models can be
found in J. Enelow and M. Hinich, The Spatial Theory of Vot-
ing and Advances in the Spatial Theory of Voting, Cambridge
University Press (1984) and (1990). A nice proof that the prod-
uct of reflections in three sides of a triangle is a glide reflection
can be found in I. M. Yaglom, Geometric Transformations I,
Mathematical Association of America, 1962. A more detailed
discussion of voting instability appears in P. D. Straffin, Power
and stability in politics, pp. 1128-1151 in R. Aumann and S.
Hart, eds., Handbook of Game Theory with Economic Appli-
cations, vol. 2, Elsevier (1994),

In the November 2001 WordWise (Another Verse, Changed

from the First) it was stated that there are 12 permutations
of order six among the 720 possible permutations of six
objects. Thanks to the readers who pointed out that there
are, of course, 120. Our apologies to readers who were
misled.

The final sentence of the article Packing Rectangles with
the L and P Pentominoes in the November 2001 Math Hori-
zons contained an error. That sentence should read:

The smallest prime is the 5 x 10 rectangle, and there
are 39 other primes, the largest being the 12 x 95
rectangle.






