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The Parallel Climbers Puzzle

A Case Study in the Power of Graph Models

wo climbers start at points A and
T Z on the left and right sides, re-
spectively, of the mountain range
in Figure 1. We pose the following

puzzle, which we call the Parallel Climb-
ers Puzzle.

Parallel Climbers Puzzle: Is it possible
for the left and right climbers to move
from A and Z, respectively, along the
range in Figure 1 to meet at M in a
fashion so that they are always at the same
altitude every moment?

M

‘graph’ hasanother meaning asamath-
ematical object G= (V,£), consisting of
anon-empty, finite set Vof vertices and
a set I of edges joining certain pairs of
vertices. Figure 2 shows a graph G= (V,
E) with vertex set V={qa, b, ¢, d, ¢ and
edge set E={a-b, a-d, Ir¢, c-d, c-¢. (Note
that an edge such as a-b is normally
written as the ordered pair (a,b), but
this standard notation turns out to be
confusing in this particular modeling
problem, because we need ordered pairs
for another purpose.) The mountain
range depicted in Figure 1 can be
viewed as a graph with vertex set V={A,
C, D, M, U W, Z)and edge set E= {A-C,
C-D, D-M, M-U, U-W, W-Z }.

Figure 1

Our objective of this paper is to
show that this puzzle has a solution for
any mountain range. The two assump-
tions we make are that:1) Aand Zare at
the same height, and ii) there is no
pointlower than A (or Z) and no point
higher than M. We shall solve this prob-
lem by means of a graph theoretic
model.

Graph theoryisanimportantfield of
discrete mathematics. While the term
‘graph’isused mostcommonlyin math-
ematics to refer to the set of points
satisfying a functional relationship be-
tween two (ormore) variables, the word
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An example of such a data structure
is a search tree for looking up a word in
a spell-checking dictionary. The spell
checker does not start at the beginning
of thedictionaryand sequentially check
the unknown word against all 50,000
words in the dictionary. Even for a fast
computer, that would be unnecessarily
time-consuming. Rather, it compares
the unknown word with the middle
word in the dictionary’s alphabetical
list of words to see if the unknown word
occurs in the first half or second half of
the dictionary. Depending on the out-
come of the first test, the spell checker
nextcompares the word with the middle
word in the first half or second half of
the dictionary, and so on. This strategy
uses each comparison to divide the set
of dictionary words that need to be
checked in half. The data structure
organizes the comparisons, telling what
comparison to do next depending on
the outcome of the current compari-
son. Figure 3 shows the beginning of'a

Figure 2

Graphs are used to analyze a wide
variety of mathematical problems, most
commonly in operations research and
computerscience. Forexample, graphs
can represent transportation and tele-
communication networks. The prob-
lem of simultaneously routing thou-
sands of long-distance calls between
various pairs of partiesisa graph theory
problem. The data structures of com-
puter science that are used to organize
linkages between various pieces of in-
formation are graphs.
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possible data structure graph for spell
checking.

A related but simpler type of search
problem involving graphs is the follow-
ing: can one find a path—asequence of
connecting edges-fromaspecified start-
ing vertex to aspecified stopping vertex



in a given graph. The vertices in the
graph might represent all the possible
positions in some puzzle and the edges
legal moves between positions in the
puzzle. “Solving” the puzzle reduces in
the associated puzzle graph to finding
apath from the starting position to the
stopping, or winning, position.

The mountain climbing problem
posed above is such a puzzle with a

peak or valley (the other point might
also be a peak or valley). An edge in a
range graph will join two vertices (F,,
Py and (P, P'p) if and only if the two
people can move constantlyin the same
direction (both going up or both going
down) from point P, to point P', and
from P, to P, respectively.

First we redraw the mountain range
in Figure 1 as shown in Iigure 4 with

of the great values of graph models.
They can often reformulate problems
in a fashion that makes the answer easy
to “see.” However graphsalso provide a
framework for proving general results.
First, we shall introduce the concept of
the degree of a vertex and make two
simple observationsaboutdegrees. This
information, when applied to range
graphs, will then lead to a simple proof
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starting position—the left and right
climbers starting at locations A and Z,
respectively—and a stopping posi-
tions—both climbersatlocation M. The
challenge in creating such a puzzle
graph is to determine what should be
the set of vertices representing possible
positions of interest. There are an infi-
nite number of points along the initial
ascend segments the two climbers take,
but a graph is defined to have a finite
number of vertices.

Like the spell-checker problem, we
are concerned in the Parallel Climbers
problem with making a sequence of
decisions. These decisions occur at
places along the climbwhere the climb-
ers will have choices. That is, in the
mountain range in Figure 1, when one
ofthe climbers arrivesata peak orvalley
(the labeled points in Figure 1), we
must correctly decide what should be
done next. Thus, the peaks and valleys
are the locations of interest that should
be used to define the vertices in our
graph model.

A range graph is a graph whose verti-
ces are pairs of points (P,, P,) at the
same attitude with P, on the left side of
the summit and P, on the right side,
such that one of the two pointsis alocal

Figure 4

points added parallel to peaks and val-
leys. For example, when the left climber
is at C, the right climber could be at
point X or point V or point 7. Thus
(CX), (GV) and (G T) will all be pos-
sible vertices in the range graph, since
the two climbers at some stage might
come to any of these three pairs of
locations.

The range graph for the mountain
range in Figure 4 is shown in Figure 5.
Our question is now, Is there a path in
the range graph from the starting ver-
tex (A, Z) to the summitvertex (M, M).
For the graph in Figure 5, the answer s,
by inspection, obviously yes.

Following the path in Figure 5 from
(A7) to (M,M) takes us first up to
(G X), then theleftclimber moveslower
but still towards the summit, while the
right climb backs down, coming to
(D,Y). Next both climbers move up-
wards to (F,W). Next the left climber
backs down while the right climber
moves lower but towards the summit,
comingto (D,U). Fromthere, the climb-
ers can jointly ascend to the summit,
(M, M)y.

The model we made in Figure 5
recasts the puzzle in afashion that made
it easy to solve by inspection. This is one

Figure 5

that every Parallel Climbers puzzle has
a solution.

The degree of avertexis the number
of edges incident to that vertex.

For simplicity, we shall assume that
the two ends of an edge must be distinct
vertices.

Theorem: The sum of the degrees of all
vertices in a graph is equal lo twice the
number of edges in the graph.

Proof: The sum of all degrees counts
every occurrence of an edge being inci-
dent to a vertex. Since every edge has
two endvertices, twice the number of
edges also counts every occurrence of
an edge being incident to a vertex. The
theorem follows.

Corollary: In any graph, there must bean
even number of vertices of odd degree.

Proof: Since the sum of all degreesis
an even number—namely, twice the
number of edges, by the Theorem—
then the number of odd terms in this
sum must be even.

Now let us examine the degrees of
the vertices in arange graph. We claim
that vertices (A, Z) and (M, M) in any
range graph have degree 1 while every
other vertex in the range graph has
degree 2 or 4. (A, Z) has degree 1
because when both people start climb-
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ing up the range from their respective
sides, they have no choice initially but
to climb upwards until one arrives at a
peak. InFigure 4, the first peak encoun-
tered is C on the left, and so the one
edge from (A, 7Z) goes to (€, X). A
similar argument applies at (M, M).
Next consider a vertex (P, P,) where
one point is a peak and the other point
is neither peak nor valley, such as (£,
W). From the peak we can go down in
either direction: at W, we can go down
toward Z or toward U. In either direc-
tion, the people go until one (or both)
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climbers reach a valley. At (£, W), the
two edges go to (D, ¥) and (D, U). So
such a vertex has degree 2. A similar
argumentappliesifone (butnotboth)
points are a valley. It is left as an
exercise for the reader to show thatifa
vertex (P,, P;) consists of two peaks or
two valleys, such as (D,U), it will have
degree 4. (A vertex consisting of a
valley and a peak will have degree 0-
why?)

Suppose there were no path from
(A, Z) to (M, M) in the range graph.
We use the fact that the starting vertex
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(A, Z) and the summit vertex (M, M)
are the only vertices of odd degree.
The part of the range graph consisting
of (A, Z) and all the vertices that can be
reached from (A, Z) would form a new
graph with just one vertex of odd de-
gree, namely, (A,7). This contradicts
the corollary and so any range graph
must have a path from (A, 7Z) to (M, M).

Thus, we have proved:
Theorem: The Parallel Climbers fruzzle
has a solution for any mountain range.l



