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One Point Determines a Line
A Geometric Axiom of Choice

he Axiom of Choice states that if you are given a set of

non-empty sets, then it is possible to choose an ele-

ment from each set. It follows that it is possible to
choose a point from each and every straight line in the plane.
But of course the Axiom of Choice isn’t necessary for this.
For example, one might choose from each vertical line its
x-intercept and from each non-vertical line its y-intercept.
This choice function leaves a couple of things to be de-
sired: different lines correspond to the same point (i.e., the
choice function isn’t one-to-one) and some points don’t cor-
respond to any lines (i.e., the choice function is not onto).
What we seek is a one-to-one and onto function from the
set L of all lines in the plane to the set P of all points in the
plane with the additional property that if line ¢ corresponds
to point p, then p lies on £. It is not difficult to believe that
there is a one-to-one correspondence between the lines and
the points because these sets both have cardinality ¢, the
cardinality of the set of real numbers, although writing an
explicit one down isn’t that easy. But it is the additional
property that makes things more fun. This article is de-
voted to showing that such a function exists. One nice in-
terpretation of this is that each line uniquely determines
one of its points and each point uniquely determines one
of the lines through it. So that when Euclid postulated that
two points determine a straight line, he wasn’t being par-
ticularly efficient.

Before we begin we should mention that it isn’t difficult
to provide a proof that such a choice function exists based
on well-orderings [1]. However, such proofs are not con-
structive. So, instead, we’ll show that such a function exists
as a consequence of Yente the Matchmaker’s Marriage Theo-
rem, which is an easy corollary of the Cantor-Schréder-
Bernstein Theorem. Finally, we’ll actually construct such a
function—one that is very geometric in nature.
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All in the Family

The Cantor-Schréder-Bernstein Theorem states that if
|A|= |B| and |B| = |A}|, then |A| = |B], or, equiva-
lently, if f'is a one-to-one function from A to B and g is a
one-to-one function from B to A, then there is a one-to-one
and onto function h from A to B. Let’s take a few moments
to review one of the classical proofs of this theorem, as it
will be needed later.

The first step is that we may assume that A and B are
disjoint. The reason we may assume this to be the case is
that we can go into the next room and use the color Xerox
machine to make an aqua copy of set A and a black copy of
set B. Then AquaA has the same number of elements as A
and BlackB has the same number of elements as B, and
AquaA and BlackB are disjoint. So now we are assuming
that [AquaA| < |BlackB| and |BlackB| = |AquaA|, and
we must show that | AquaA| = | BlackB|. We'll simply refer
to AquaA and BlackB as A and B for short, but remember
that A and B now have no elements in common. The rea-
son for doing this first step is basically so that when we take
an element we will know if it is in set A or in set B without
any ambiguity—it will be in one or the other, but not both.
Henceforth, set A and elements of set A will be written in
aqua, like A and a respectively, and set B and elements of
set B will be written in bold, like B and b respectively.

Now let’s continue. We are given that |[4]| < |B], so we
know that there is a one-to-one function ffrom A to B. And
we are given that |B] < |4, so we know that there is a one-
to-one function g from B to A. Our job is to show that there is
a one-to-one and onto function h from A to B. We will actually
construct such an 4, but first we'll need some preliminaries.

Now let’s take an element a from set A, and look at its
“family.” First, since « is from set A, we may apply the func-
tion f to it to get the element f(a) in set B. (You might
think of f(a) as being the “child” of element a.) Then since
f(a) 1s in set B, we can apply the function g to it to get the
element g(f(a)) back in set 4. (You might think of g(f(«))
as being the “grandchild” of element a.) And we may con-
tinue in this fashion to produce the “descendants” of :
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¢(f(@)) —— f(g(fa))) —> ...
The descendants of «

(Note that it is possible that « can be one of its own descen-
dants, for example if a = g(f(«)) orifa = g(f(g(f(«)))), but
don’t worry about that. However it is of course impossible
fora = f(a) or « = f(g(f(a))).)

But this may not be all of «’s family. There may be an
element in set B which hits ¢ under the function g. If this is
the case, then there is only one element of set B which does
this because the function g is assumed to be one-to-one.
This element of set B (if there is one) we'll denote by g71(a),
and we’ll use a “?” to remind us that there may not be any
such g~1(a). (You might think of g~(a) as being the parent of
a.) Similarly, the element g7 (a) in set B may be hit under the
function f by an element of set A which would be denoted by
£ (g (@)). (You might think of / ~'(g~!{a)) as being the grand-
parent of a.) While the descendants of a certainly exist, the
ancestors of @ are much more iffy.

g (T (g @) 222 —— (g @) ??
——gl@)? ——a
The ancestors of a
Or for short:
... PP 5 22 5 P a

The ancestors of ¢

The descendants of «, together with the ancestors of «,
together with a itself, make up a’s family:

L3202 2? ? sa
——fla) —— g(f(a)) — ...

The family of a

Elements of set A can be of three different types, de-
pending upon what kind of families they come from. There
are those elements of A which have a furthest ancestor in
set A, and we denote these elements of set A by A,. (If an
element of A has no ancestors, then we’ll consider that ele-
ment to be in A,.) There are those elements of A which
have a furthest ancestor in set B, and we denote these ele-
ments of set A by Ap. And, finally, there are those elements
of set A which have no furthest ancestor at all (their ances-
tors can be traced infinitely far back), and we denote these
elements of set A by A,. (One is reminded of the opening
line from Tolstoy’s Anna Karenina: “All happy families are
like one another; each unhappy family is unhappy in its
own way.”")

Similarly, each element of B has its own family as well, and
the elements of B are also of three different types By, By
and B, depending on whether the element of B has its fur-
thest ancestor in set A, in set B, or has no furthest ancestor.

We are now ready to construct our long-sought-after one-
to-one and onto function A from A to B. We define 4 as
follows: If @ belongs to A, or A,, we let h(a) be f(a); if ¢
belongs to Ay, we let h(a) be g~(a). In other words, to de-
fine h(a), we first look at @’s family and see what kind of
family it belongs to. If @ has a furthest (left) ancestor which
is in set A, we let h(a) be that member of a’s family which is
one place to @’s right, i.e., @’s child. And we do the same if
a has no furthest (left) ancestor. But if @ has a furthest (left)
ancestor which is in set B, we let h(a) be that member of @’s
family which is one place to ¢’s left, i.e., a’s parent.

We must of course check that £ is a one-to-one and onto
function from A to B. Itis certainly a function from A to B,
because given an « in set A, we know exactly which element
of set B (either f(a) of g™\(a)) is assigned to it. Why is it
onto? Suppose b is an element of set B. Which element of
set A hits it under the function £? Well, we look at b’s family.
Ifbis in B, (i.e., b has a furthest (left) ancestor in set A),
then b’s parent (f~'(b), for those of you keeping score at
home) also has it’s furthest ancestor in setA, i.e., b’s parent
1s in A, because b and its parent belong to the same family.
So h assigns to b’s parent the element of B immediately on
its right, namely b itself. So this b is hit. The cases in which
bisin By and b is in B, are similar. Finally, the function 4 is
one-to-one because, given a b in set B, we know exactly
which element of set 4 hits it (depending upon b’s family),
and there is only one element of set A which hits it because
fand g are both one-to-one.

Yente’s Marriage Theorem

(Yente is the matchmaker in Fiddler on the Roof.)

Yente the Matchmaker’s Marriage Theorem. Suppose that
M 1s a set of men (finite or infinite) and that W is a set of
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women (also finite or infinite). Suppose each man in M has
a set of female acquaintances in W, and vice versa. Suppose
that it is possible for Yente to marry oft each man in M to
one of his acquaintances in W so that no polygamy (polyan-
dry) occurs. (Some of the women may end up unmarried
by this pairing.) Suppose that it is also possible for Yente to
marry off each woman in W to one of her acquaintances in
M so that no polygamy (polygyny) occurs. (Some of the men
may end up unmarried by this second pairing.) Assume
further that if ¢ is an acquaintance of b, then b is an ac-
quaintance of a. Then it is possible for Yente to marry off
all of the men to all of the women, everyone to an acquain-
tance, so that no polygamy of any kind occurs.

Proof. 1f it is possible for Yente to marry off each man in M
to one of his acquaintances in W so that no polygamy (poly-
andry) occurs, then there is a one-to-one function f from M
to Wso that if m € M then f(m) is one of m’s acquaintances.
Similarly, if it is possible for Yente to marry off each woman
in Wto one of her acquaintances in M so that no polygamy
(polygyny) occurs, then there is a one-to-one function g from
W to M so that if w € W then g(w) is one of w’s acquaintan-
ces. By the Cantor-Schréeder-Bernstein Theorem, there is
a one-to-one and onto function from M to W, i.e., it is pos-
sible for Yente to marry off all of the men to all of the women
so that no polygamy of any kind occurs. But how do we
know that each person gets married to one of his or her
acquaintances? The statement of the Cantor-Schroder-
Bernstein Theorem doesn’t tell us that. However, the
PROOF does! Ifm € M, then k(m) is either f(m), one of m’s
female acquaintances, or g~!(m), who has m as an acquain-
tance, and by assumption is therefore an acquaintance of
m. Similarly, if w € W, then w is marned to hYw), an ac-
quaintance of w.

A Constructive Proof

To obtain a one-to-one correspondence h from P to L so
that if p is a point of the plane then p lies on the line A(p), it
suffices, by Yente's Theorem, to tind a one-to-one function
Sffrom P to L so that ifp is a point of the plane then p lieson
the line f(p) and a one-to-one function g from L to P so
that if £ is a line in the plane, then the point g(/) lies on Z.
(Think of the pomnts as being the men, the lines as being
the women, and point p is an acquaintance of line ¢ if and
only if p lies on £). So our next step is finding these two one-
to-one functions.

First, we define f: P = L. If O stands for the origin, then
we let f(O) be the x-axis, and if p is not O, we let f(p) be the
line through p which is L to Op. It is easy to see that fis one-
to-one. IFurthermore, it is also easy to see that the image of
[ consists of all lines not through the origin, together with
the x-axis. (See Figure 1.)

Next we define g: . = P. We let g (the x-axis) be O. If £, is
a line through O, which is not the x-axis, we let g(£,) be the
point on both /; and the open upper half of the unit circle,
U= {@xnNx*+y =1, and y > 0}. Finally, if 4, is a line not
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containing the origin, we walk from O to the point of /,
nearest the origin, make a right turn and walk to the point
on £, which is 1 unit away, and define g(¢,) to be that point.
(See Figure 2.)

Notice that, for such an /,, g(4,) is a point in the exterior
of the unit circle—i.e., g(fy) € E = {(x, y)[x? + % > [}—
because the hypotenuse of a right triangle is its longest side.
Furthermore, any point p in the exterior of the unit circle is
the image of exactly one such 7, under the function g: given
p construct the circle of radius 1 about p, notice that O is

fo=g-1(p)

N

“left” tangent
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v

Figure 3



define i(p) to be g!(p), the line through p and the point of
C,_; which 1s one unit “to the left” of p, as viewed from the
origin. (The penultimate case of points on the dotted part
of C, can be combined with the dotted case of C,, (n > 1) if
one considers C, a circle of radius 0, to be the origin.)

If you are given a point p of C, without the entire pic-
ture, and you want to determine A(p), just construct a
spiral of right triangles each having a leg of length 1,
spiraling to the left, until you get to the unit circle, and if
you encounter a point on U, let 2(p) be g7} (p); otherwise,
let h(p) be f(p).

3 This leads us to an analytic description of k, which may
be preferred by some readers. The image of O under h is
the x-axis. If p =~/ne® for some positive integer n and

sin(6 + 3y yarcsin(1/Vk))> 0, then A(p) is the line

through p and Vn - Je6 aresinlNT) I all other cases r(p)
is the line through p which is perpendicular to Op. [

Endnote

[1] For those readers familiar with well-ordering proofs, the idea
Figure 7 is as follows: First well-order L and P, both sets of cardinality ¢, so
that each element of L and P has fewer than ¢ predecessors. Next
if £ belongs to L and assuming that from each line preceding £ a

. point has been chosen, pick the first point of £ not already cho-
Le., U, thenp has exactly one ancestor, p € Py, so we define sen. Note that a point never gets chosen twice. Finally, to show

h(p) to be g™'(p), the line through p and O. Finally if p lies on  y,5¢ each point does get chosen, use the fact that a point lies on ¢

the part of C, (n > 1) depicted by a dotted open semicircle, lines, so that if it were not chosen, it must have ¢ predecessors, a
then p has an odd number of ancestors, p € P;, and we  contradiction.

fine h(p) to be f(p). If p lies on the open dotted part of C,,
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