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What if you, and all the matter that makes up your
measuring instruments, shrink as you approach the edge
[of the universe], and shrink in such a way that you could
put your ruler end to end infinitely many times and still
never reach the edge? After all, what evidence do you have

that you do not change size as you move about the world?

Noneuclidean Wallpaper

Perhaps, like me, you heard the following
argument as a child on the playground:
“The universe could not possibly have
an edge, because if it did you could go
there and put your hand through, and that
new place would have to be part of the
universe t0o.”

If only I had known hyperbolic geom-
etry, [ might have refuted this seemingly
unassailable argument, in the following
manner: “What if you, and all the matter
that makes up your measuring instruments,
shrink as you approach the edge, and
shrink in such a way that you could put

There is nothing below the line!
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your ruler end to end infinitely many times
and still never reach the edge? Afier all,
what evidence do you have that you do
not change size as you move about the
world?”

A simple mathematical model of a two-
dimensional universe, called the Poincaré
Upper Halfplane, illustrates the possibil-
ity of a universe with an unattainable edge.
In this article, I describe this model—a
famous example of a noneuclidean geom-
etry—and explain how conversations with
an analytic number theorist led me to cre-
ate wallpaper patterns for its inhabitants.
These are interesting not only for their
high “Gee whiz!” factor, but also as a win-
dow for observing the features of this
unusual geometry.

The World of the
Shrinking Ruler

To describe the unusual universe we will
study in this article, we must stand out-
side it. Imagine yourself looking down on
the ordinary Cartesian plane; the model
world consists of those points that lie
above the x-axis, as if points on or below
the x-axis have been declared off-limits to
inhabitants of our model world, henceforth
dubbed the Poincarites. In fact, for the
Poincarites, that axis is infinitely far from
any point. From our omniscient point of
view, the inhabitants’ rulers shrink in a
particular way as they approach the x-axis.

I will later give a precise mathematical
rule to describe how this shrinking oc-
curs, but first let us consider how the in-
habitants of this world travel if they at-
tempt to move along a straight path. Be-
cause physical particles travel in the
straightest way possible, in the absence
of other forces, understanding how to
move without curving is essential to life
as a Poincarite.

Any vertical line in the plane, or at least
the portion of it that belongs to our new
universe, is straight for two reasons. First,
the strange change in the size of matter
occurs only when moving up and down,
not side to side; therefore, if a Poincarite
walks up this line with hands out on ei-
ther side, each hand travels exactly the
same distance-—a reasonable criterion for
straightness. Second, observe that trans-
forming this universe by flipping the plane
about that line does nothing to change
the size of any measurements, and doing
so leaves that line invariant: if the
straightest path diverged to the left then,
by symmetry, it would also have to di-
verge to the right; presumably, there is
only one way to go straight in any given
direction, so that vertical line must be
straight.

Heading in a horizontal direction, what
path would be the straightest? If a
Poincarite maintains a fixed y-coordinate
and walks to the left, the hand with the



lower y-coordinate travels farther than the
other hand, since that lower path is mea-
sured with shrunken rulers. Such a per-
son is actually curving to the left! It turns
out (we still have not given any rigorous
definitions here) that the straightest path
for the Poincarite who begins in this di-
rection is a portion of a Euclidean circle
whose center is on the x-axis, which is the
edge of the universe.

The proof is beyond the scope of our
discussion, but it turns out that these
straightest paths also give the shortest
way to connect any two points. Also, be-
tween any two points of the Poincarites’
world, there is a unique hyperbolic line
connecting them.

The space we have described is called
the Poincaré Upper Halfplane or the hyper-
bolic plane. These straightest paths,
whether vertical lines or portions of Euclid-
ean circles that meet the boundary at right
angles, are called hyperbolic lines. This
conceptual universe played an important
role in the historical development of non-
euclidean geometry. All the axioms of Eu-
clidean geometry are satisfied, except the
crucial parallel postulate (can you see how
the lines in Figure 2 contradict Euclidean
assumptions?). Therefore, this model
shows that postulate to be truly indepen-
dent of the rest of Euclid’s system. There
are higher dimensional hyperbolic spaces,
but we will stick with the two-dimensional
version.

To construct our wallpaper it’s crucial
to understand the isometries of the
Poincaré Upper Halfplane, that is, the
transformations that leave all measure-
ments unchanged. We assume an intui-
tive familiarity with the Euclidean
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isometries of translation, reflection, and
rotation, and proceed to study the hyper-
bolic analogues of these.

Reflections

The reflection noted above, flipping the
plane about a vertical line, gives a simple
example of a hyperbolic isometry. In Car-
tesian coordinates, assuming that the ver-
tical line in the figure is the y-axis, it would
be expressed by the equation F(x,y) =
(=x , y). Since this transformation does
nothing to change any measurements of
figures, this is an isometry of the hyper-
bolic plane.

What about reflections across other
hyperbolic lines? In order to fit with physi-
cists’ ideas about empty space, we de-
mand a property of Aomogeneity; space
should look essentially the same every-
where, and therefore all hyperbolic lines
should behave in the same way. In par-
ticular, the two sides of any hyperbolic
line should be interchangeable.

Reflection about nonvertical hyper-
bolic lines is accomplished by a classical
process called inversion in a circle, which
you may have studied in other contexts.
This is a beautiful way to interchange the
instde and outside of a circle, leaving
points on the circle fixed. If P is any point
other than the center of the circle, which
we’ll call C, then the image of P is the
point P’ on the ray from C through 2 so
that the product of the distances CP and
CP' is the square of the radius of the circle.
Figure 3 illustrates inversion in a particu-
larly simple semicircle (hyperbolic straight
line). The formula for the illustrated inver-
sion is

X Yy
f(x,y)=[2 — 2}
X +y X +y

Notice that in the figure, orientation has
been reversed; for this reason, reflections
are called indirect isometries. If we’re will-
ing to use complex coordinates for the
Upper Halfplane, then the formula for /(z)
becomes appealingly simple

I(z)=1/Z.

If you want to look ahead to Figure 6,
you will see a pattern invariant under re-
flections across certain vertical lines. It
takes some imagination to see, but this
one is also invariant under the inversion
described above. It might help to know
that the peacock fans that seem to be larg-
est—for the Poincarites they are all ex-
actly the same horizontal distance
across—touch the x-axis at integer points.

Translations

There are two analogues of translations
in the hyperbolic plane. The first is a rather
obvious shift to the right or left, given in
coordinates by

P, y)=(x+ay) or P2)=z+aq,

where a is any real number. Since we don’t
move anything up or down, P preserves
all distances.

The next translation analogue is some-
what suprising, and brings me to say ex-
actly what we mean by distances measured
by a shrinking ruler. If we dilate the plane
relative to any point on the x-axis, hyper-
bolic distances, the ones measured by
shrinking rulers, are preserved. Suppose
y () = (x(@), y(©), fora <t < b is any
parametric curve with y(f) > 0. Its hyper-
bolic length, that is, its length as measured
by the Poincarites, is defined to be

L= ————Wdt.

This is quite similar to the usual formula
for arc length, except that the factor of y in
the denominator causes an apparently
short piece of arc to count as large in the

Figure 3
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Figure 4. Euclidean wallpaper with many symmetries

integral when it is close to the edge. This captures the essence
of the shrinking ruler.
Now consider the transformation

Hx,y) = (rx,ry) or H(z) = rz.

Apply this transformation to the curve y(f) and use the integral
definition to compute the length of the new curve. It is easy to
see that a factor of r cancels from numerator and denominator,
leaving the length unchanged; thus, / is an isometry.

Why is [ analogous to a translation? Note that the entire y-
axis moves along itself under H. Of course, in a Euclidean trans-
lation, an entire family of parallel lines slides along itself, but
that is not how things work in the hyperbolic plane. We must be
content to slide along a single line at a time. While we are on this
subject, it is interesting to note that the translations to the right
and left, denoted by P above, are analogous to Euclidean trans-
lation in that they shift across a family of lines, in this case the
family of vertical lines. Surprisingly, there is no line moved along
itself by that type of translation.

Rotations and the Rest

To find an example of a rotation, simply compose the two reflec-
tions above. Check for yourself that following F by / gives

— 1
2 xz’ 2y 2)0”3(2):__’
X“+y xT+y z

R(x,y)= [

which is a hyperbolic rotation of 180 degrees about the point
(0,1).
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Again looking ahead to Figure 6, that image is invariant un-
der this half-turn. The fixed point is not labelled, but you can
find it in the pale pink area atop one of the large peacock fans.
All the noneuclidean wallpapers shown also turn out to be in-
variant under the transformation

z—1
R3(Z): ’
z

which is a rotation through 120° about the point z = %+ i%.

Figures 9 and 10 are good places to observe these rotations. In
Figure 9, there are centers of two-fold rotation at the points
where two lines cross, and centers of three-fold rotation at points
where three lines cross.

The collection of isometries of the hyperbolic plane presented
so far turns out to be representative of all possibilities. To inves-
tigate the totality of these isometries, let us focus on half of
them, the set of direct isometries. If you have a feel for the
operation of conjugation in the complex plane, you might guess
that the formula for any direct isometry will involve only appear-
ances of the variable z, with no Zs required. This is in fact the
case.

Using the fact that the composition of two isometries is again
an isometry, and looking at the types we have seen so far, it will
now be no surprise that the most general direct isometry of the
hyperbolic plane looks like

_az+b
cz+d’

¥ (2)

where a, b, ¢, and d are real numbers. These are called fractional
linear transformations.
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It takes some algebraic manipulation, but it is not too hard to
show that this function takes points with y > 0 to other points in
the Poincaré Upper Halfplane only when ad — bc > 0. Further-
more, note that if ad — bc = 0, the numerator and demoninator
would have a common factor and y would degenerate to a con-
stant function, not a candidate for a transformation at all. Sup-
pose we multiply all these coefficients by the same factor; it
could be cancelled from numerator and denominator, resulting
in the same transformation. Therefore, to avoid redundancies,
we assume ad—hbc=1.

Figure 6

A helpful shorthand uses a 2 X 2 matrix to keep track of these
fractional linear transformations:

(2) = az+b _(a bj"z-

cz+d \cd

It should be considered a minor miracle that composition of
functions corresponds exactly to multiplication of matrices. Try it!

We have now identified the set of direct isometries of the
hyperbolic plane with a set of 2 X 2 matrices. If you know a little
about groups, you can easily sce that this set of matrices forms
a group, which is usually called SL(2, R). It is actually subtly
different from the group of direct isometries of the hyperbolic

plane, in that
ab —a -b
oz = oz,
cd —c—d

so that two different matrices give the same transformation. We
leave that distinction to the experts.

Creating Symmetry

As a basic example, consider a process for creating an even
function of one variable, that is, a function f(x) invariant with
respect to reflection of the real line about the origin:

fi=) = f(0).
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Given any base function g(x), we can symmetrize g(x) to cre-
ate a new function f(x) by a process of averaging:

PRICET(S0)
2

Clearly, the new function is even. Of course, it is possible that

the new function is identically zero, but it is indeed even.

For another easy example, suppose we wanted to create a
function of two variables f(x, y) that is invariant under rotation
of 120 degrees about the origin. Again, a process of averaging
may be used, but this time there are three things to be averaged.
Suppose g(x, y) is any function of two variables, enjoying what-
ever properties of continuity or differentiability we wish to im-
pose, and suppose p represents this rotation. Define a new sym-
metrized function by

Fny)= 8ENT 8P, 3y>)+g<p2<x, )

Check for yourself that f(p(x, y)) = f(x, y), so that f is indeed
invariant under the desired rotation. The reason for dividing by
three is to make the new function have values in about the same
range as the old. Ponder the level curves in the “before and
after” example in Figure 5, where g(x, y) = (x” + 3x)e*2x2+y 2).

This gives you some idea of a process called averaging a
Jfunction over a group action. In the rotational example, the
group consisted of three elements, e, p, p%, where ¢ is the iden-
tity transformation.

In making wallpaper for the Poincarites, my method was to
look for functions that are invariant under a particular set of the
isometries described above. Because it is a set much beloved of
analytic number theorists, I chose the set of fractional linear
transformations where all the coefficients are integers. This set,
which also meets the requirements to be a group, is called

ab
SL(Z,Z)z{( d] where a,b,c,d € 7. and ad —bc = l}
¢

Surprisingly, my next step amounted (almost) to taking a base
function on the plane and averaging it over this infinite group!

But before I describe that averaging, let us imagine what we
expect to see. In the swatch of Euclidean wallpaper shown in
Figure 4, we can apply a large collection of Euclidean symme-
tries, reflections, rotations, and translations to the picture and
find the pattern left unchanged; of course, we need to imagine
that it continues infinitely in all directions, that what we are
seeing is a piece of an infinite pattern. For hyperbolic wallpaper
of the type to be constructed, we should be able to apply any of
the transformations in SL(2, Z) and find the pattern unchanged.

In particular, consider two families of transformations. The
simplest translations we discussed, P(z) = z + b, are indeed in
SL(2,Z) when b is aninteger. (Use a=d =1 and ¢ =0.) Thus, our
picture should repeat itself with every unit translation to the
right or left; that is reasonably easy to imagine. Call this collec-
tion of translations I'.
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This family of transformations has a sort of mirror image, in

the set
, 10
I'= where ne Z ;.
nl

To study atypical element, y(z) = ——

-7 » We compute two Himits:

limy(z)=0
z—>00

lim y(z) =00
gL

If the picture is supposed to look the same before and after we
apply this transformation, then the behavior as z gets very large
should look the same (to the Poincarites, of course) as when z
approaches 0 and when z approaches —1/n. Of course, 7 cannot
actually be 0, or o, or —1/n, as none of these is a point in our new
universe, but the picture should look the same as you approach
any of these points. With some modification, the same argument
shows that the pattern must look the same as we approach any
rational value on the x-axis. Before the first computed image
appeared on my screen, I found it hard to imagine such a thing.

Constructing Wallpaper

The group SL(2, Z) is actually too large to perform the averaging
we described. To tell the real story, I need to use the language of
cosets from group theory. If you want to skip this section, imag-
ining the process as one of averaging is a good heuristic.

Recall that our goal is to take some base function g(z) and, by
some sort of averaging, produce a new function f(z) which is
invariant under every transformation of SL(2, Z). Any function
with all those symmetries is called a modular function. Modular
functions and analogous objects called modular forms are well
known to number theorists, so Jeffrey Hoffstein of Brown Uni-
versity was a natural person to ask for help. I told him that I had
taken a stab at the construction using naive group averaging,
and he showed me how to do it more cleverly. The result was a
method I used to make the pictures in this article.

The naive idea would be to start with g(z) and form

Y gy

yeSL(2,Z)
hoping that the sum would converge. Unfortunately, it virtually
never does. Instead, we start with a special choice of g(z), one
that is already invariant under the subgroup, I, of integer trans-
lations to the left and right. Such a g is easy to invent.

The key idea we need from group theory is that the big group
SL(2, Z) can be organized into cosets using the subgroup I,
where any two elements of a coset differ by an element of . It is
a little like organizing the integers into three sets, {3n}, {3n+1},
and {3n+2}, the cosets of the subgroup of integers divisible by
3. To adapt this idea to SL(2, Z), we need to remember that the
group operation is matrix multiplication, soy, and y, differ by an
elementof I'ify,;y, €T
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The following equation shows that any two elements of
SL(2, Z) that share the same bottom row belong to the same

coset of I':
ab\(a ¥\ (1db-ba
= el
cd\ed 0 1

Conversely, multiplying any matrix on the right by an element of
I' does nothing to the bottom row. Thus, each coset of T" corre-
sponds to a pair of integers ¢ and d. These must be relatively
prime (denoted (¢, d) = 1), as you can see from the equation ad—
be=1,

We now should be able to perform some averaging, but there
is one missing ingredient: given a pair of integers ¢ and d, we
need to find a top row for our matrix. The Euclidean algorithm
comes to the rescue here. Siman Wong of the University of
Massachusetts, Amherst, who was also at Brown University at
the time, wrote a swatch of code to generate a list of relatively
prime ¢, d pairs and one corresponding pair of values for a and b.

Putting all this together, I was ready to write a program to
perform the average:

2. &(r?)
(c,d):l
where y is one of the matrices whose bottom row consists of ¢
and d. Note that we are not dividing by the number of elements
in the sum. In the first place, we are summing over an infinite
number of clements, and in the second place, the sum converges
nicely without doing so, provided we make the right choice for g.

Examples

We are now ready to choose some building blocks and carry out
the averaging process to produce images. In light of the previ-
ous section, the function we choose as the building block for
averaging must remain the same when you translate to the left
and right by integer distances. One type of function that fits this
bill is a function that does not depend on x at all. (Recall that we
are using complex notation, where the point (x, y) corresponds
to the complex number z = x + iy.) As an elementary building
block, take
g@)=y*
which is certainly invariant under the translations in I'. An esti-
mate using an integral test for convergence shows that the sum
above will converge as long as s is any complex number with
Re(s)>1.
A favorite first example uses

g(z) =y 75 =p15(cos(5 Iny) + isin(5 Iny)).

This is pictured in Figure 6, with a close-up view of the entic-
ingly complicated part of the image in Figure 7. Note that all the
shapes that resemble peacock fans are exactly the same hyper-
bolic distance across, because any one can be taken into any
other by one of our isometries, which the Poincarites see as

leaving .all distances unchanged. Furthermore, there is one of
these fans tangent to the x-axis at every rational number. What
a lot of room there is, down near the edge of the universe!

It may be startling to see that the function g, and hence the
averaged function f, takes on complex values. How can these be
pictured? Space constraints demands that I make a long story
short. In the study that led to the article “Vibrating Wallpaper,”
I developed a way to visualize complex-valued functions in the
plane using the artist’s color wheel. (See www.maa . org/news/
cvm. html.)Every complex number receives a different color,
with white at the center and black out toward infinity; hues are
distributed in a circle (Figure 8). When you have a complex-
valued function on a domain in the plane, you can color each
point of that domain using the color corresponding to the out-
put value for that point. For more information, follow links from
my web page. Here, suffice it to say that the black portions of
the image are places where the value of the function is very large
in magnitude; white spots correspond to places where the func-
tion is near zero.

More exciting images are produced using g(z) = y*sin(nmrx),
as in Figure 9, or g(z) = y*cos(nmx). To achieve the required
translational invariance, » must be an integer. In this picture,
which uses the sine function as a building block, notice the
white areas; since sin(nm) = 0, this function is zero on a grid of
hyperbolic lines. Since sin(—x) =—sin(x), it also has an antisym-
metry about the y-axis.

It opens a rather enjoyable can of worms to realize that one
can superimpose these fundamental building blocks, to pro-
duce infinite variations on these pictures. Figure 10 uses a base
function that superimposes functions like y*sin(nmx) and
y’cos(nsx); any linear combination will do. I experimented until
I was pleased with the result.

Where To Go From Here

Speedy computers, color monitors, the world-wide web, all these
give us tools for creating and sharing images that use color to
illustrate mathematical ideas in a way not possible even ten years
ago, when the computational power necessary to produce the
images in this article was simply unavailable. With what you have
seen in this article, I hope you will be inspired to create some
images of your own. If you want to compute modular functions,
and explore the endless variety of possibilities, I have outlined all
the steps; there are also animations waiting to be made, showing
these wallpapers in vibration. Alternatively, it would be great to
see a video game where objects bounce along trajectories that
follow hyperbolic lines; one thing to be overcome in that scenario
is that a random walk in the hyperbolic plane almost certainly
results in your getting lost in that expansive place that the exter-
nal viewer sees as being down near the edge of the universe.
Tristan Needham’s book Visual Complex Analysis, Clarendon
Press, is an excellent place to learn about fractional linear
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Figure 7

Figure 8

transformations. To experience the
Poincaré Upper Halfplane for yourself,
you can use NonEuclid, Java simula-
tion software developed by Joel
Castellanos at Rice University. (See
math.rice.edu/~joel/
NonEuclid.) With so many possibili-
ties for visualization, the time to study
this noneuclidean geometry and explore
the edge of the universe is now. [l
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