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Since Descartes’ development of the rectangular coordinate system, mathe-
maticians have used the following analytic geometry formula for finding the
squared distance between two points, P (x,, y,) and Py(x,, y,),

PP, = (= x)P+ (= 1) (1)

Unfortunately, many students do not consider this formula to be of much
interest and rarely do they appreciate its power as a mathematical tool. One reason
for this lack of interest and appreciation of the distance formula is that students are
too often asked to merely prove the formula or to verify that the formula does in
fact yield the desired distances for a set of exercises. Although such a task does
provide practice in translating from geometric form to algebraic form, together
with practice in algebraic manipulation, it ignores the creative aspect of mathema-
tics.

This article will outline a problem solving approach to a topic in geometry that
was original research for us (the results may be known to other mathematicians).
The process described below affords students ample opportunity for transforming
to algebraic forms and for algebraic manipulation. In addition, it indicates how a
student might develop a conjecture and then verify it for himself.

Recall that for two equally spaced points ¥, and V, on a unit circle and for any
other point P on the circle that V|V, is a diameter and AV, PV, is a right triangle
(see Figure 1). From the Pythagorean theorem we have

PV, + PV, =TV,V, =4
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Figure 1.

Our first question is:

Suppose we take V', V, and V5 to be three equally spaced points on a unit circle
and let P be any point on the circle (sec Figure 2). The sum of the squares of PV,
PV,, PV, becomes PV,% + PV,? + PV,;* = 6.000 (see Table 1). The data in Tables 1
and 2 was obtained from the computer program listed at the end of this article. (At
the beginning of our research the data was obtained by making scale drawings, and

Can this result be generalized?

Figure 2.

then measuring and performing the necessary computations).

"

Table 1

PV 2+PV2+PVy +

- +PV2

Number of points (n) on the unit circle

Arbitrarily
selected
points 2 points 3 points 4 points 5 points 6 points
P, *4.000 6.000 8.000 10.000 12.000
P, 4.000 6.000 8.000 10.000 12.000
P, 4.000 6.000 8.000 10.000 12.000
P, 4.000 6.000 8.000 10.000 12.000
Py 4.000 6.000 8.000 10.000 12.000
mean of sum 4.000 6.000 8.000 10.000 12.000

* Each value is rounded to nearest thousandth.

From Table 1 we observe,

PV, + PV, + PV,  + PV, =8 =2(4) (for 4 points),

PV, + PV, + PV, + PV, + PV, = 10 = 2(5) (for 5 points),

PV, + PV, + PV, +

.+ PV,

= 12 =2(6) (for 6 points).




Thus, conjecture 1 is

For n (n > 2) equally spaced points (V, V,, ..., V,) on a unit circle and P any
point on the circle, the sum

PV, 4+ PV, + PVy + -+ + PV, =2n. )

Vi(ab bl)

V"(a"’ b’l)

Figure 3.

Proof. A graphic representation is shown in Figure 3. To simplify the algebraic
manipulation and with no loss of generality, we will restrict the point V¥, to be the
intersection of the circle and the positive X axis. Let the coordinates of ¥V, and P
be (a;, b;) and (x, y), respectively. From the distance formula we have PV:=
(x — a)* + (y — b))* and thus the desired sum S becomes

2

S=PV, + PV, + PV, + --- + PV,
= [(x - a1)2 +(y- bl)z] + [(x - a2)2 +(- bz)z]
++[(x—a) + (y - b))
=[(x* = 2xa; + @) + ()* — b, + b))+ [(¥* = 2xa, + a,7)

+(y2—2yb2+b22)] + .- +[(x2—2xan+an2)+(y2—2ybn+b,,2)].

Simplifying and using summation notation (where the sum is from i = 1 to n) we
have,

§= n(x2 +y2) - (2x)2ai_ (2)’)21’;"' > (ai2 + bi2)~
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Since the coordinates of P and V; satisfy the equation of the circle (X2 + Y%= 1),
we have x? + y? =1 and a? + b? = 1. So,

S=n(l)— Q2x) X a— 2) Zbi+ X (1)
=n—Q2x)2a— ()2 b+n
—2m- @03 a- )b

The desired result will be obtained if > ¢; = 0 and 3,5, = 0. To prove these sums
are zero, we will use two different arguments.*

Think of the n points as equal weights distributed on the outer edge of a
homogeneous disc. Since the disc will balance on its center, the x and y moments
must each add to zero. Thus, Y a;, =3 b, = 0.

A more formal proof will now be given. Let the ith point (V) on the unit circle
be represented by the complex number Z, = a, + by—1. Since the n points
V', Vs, ..., V,) are equally spaced on a unit circle, we have the Z’s are the nth
roots of unity. Thus, they are the n roots of the polynomial equation Z" — 1 = 0.
S0, (Z-2ZXZ—-2Z,))---(Z—2Z,)=Z"— 1. But the coefficient of Z"~!is 3 Z,.
Hence, 3, Z, = 0. Therefore, both the real part Y a, and the imaginary part 3b;
must equal zero. Now combining these results, we have,

S=PV, + PV, + PV, + - - - + PV, =(2)(n) forn>2.

Thus, Conjecture 1 has been verified. Recall the circle in Conjecture 1 was a unit
circle. A second question that might be asked is: How is Conjecture 1 changed (if
any) if the radius r of the circle is permitted to vary?

The data in Table 2 indicates a pattern that allows us to suggest a plausible
answer to the question, which we designated as Conjecture 2.

For any point P on a circle of radius r and n (n > 2) equally spaced points on
the circle, the sum

PV, + PV, + PV, + - - - + PV, = r*(2n). 3)

The proof is similar to the proof of Conjecture 1 and thus will not be given.

* We are indebted to an unknown referee for both of these proofs. Our original proof of > a; =35, =0
made use of two trigonometric series.
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Table 2

PVE+PViE+ -+ +PV2

Number
of

Points Radius (R) of Circle
(n) R=1 R=2 R=3 R=4 R=5
2 *4.000 16=4-(4) 36=9-4) 64=16-(4) 100 =25-(4)
3 6 24=4-(6) 54=9-(6) 96 = 16 - (6) 150 =25 - (6)
4 8 32=4-(8) 72=9-(8) 128 =16 - (8) 200 =25-(8)
5 10 40=4-(10) 90 =9-(10) 160 =16 - (10) 250 =25-(10)
6 12 48=4-(12) 108 =9-(12) 192 =16-(12) 300=25-(12)

* Each value is the mean of the sum (rounded to the nearest thousandth) for ten arbitrarily
chosen points P.

In Conjectures 1 and 2 the variable point P has always been taken to be on the
circle. This suggests a third question: What will happen if the point P is any point
in the plane of the circle?

Vi(a;, b)

Figure 4.

To answer this question we will proceed directly to an analytic approach to the
problem. Figure 4 illustrates the situation. Let PO = k. Then,

S=P_V12+_PV22+ e +P_Vn2
= [(x - 01)2"' - bl)z] + [(x - a2)2 +(y— bz)z]
T +[(x_a”)2+(y_bn)2]
=[(x2—2xa1+af)+(y2—2yb1+b12)] 4.

+ [(x2 — 2xa, + a?) + (y* — 2yb, + b,f)]
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Simplifying and using summation notation we have
S=n(x*+y%) — 2x) 2 a— (2p) 2 b+ X (af + b})
=n(x*+y*)—0—-0+ nr?
because
Ya=>b=0 and a’+b}=r"
Since PO = k, we have (x — 0)? + (y — 0)* = k% Thus,
S = n(k? + nr* = n(k* + r?).
Hence, we have proven the following theorem:

For n(n > 2) equally spaced points (v,, v,, . .., v,) on a circle of radius r and
center at 0 and P any point in the plane of the circle, the sum of the squares of the
distances from P to v, (i=1,2,...,n) is n(k*+ r?), where PO = k. This may be
denoted by

PV, + PV, + PV, o+ - - - + PV, = n(K2 + ). (4)

Some properties of regular polygons may be obtained by using the results devel-
oped here. For example, let 4,4,4, ... 4, be a regular polygon (henceforth called
a polygon) of n sides inscribed in a circle of radius r and let P be any point on the
circle (see Figure 5 for n = 6). Since the vertices of the polygon are equally spaced

Figure 5.

and on the circumscribed circle, then formula 3 from conjecture 2 may be applied.
Since P can be any point on the circle, we will take P to coincide with vertex 4,,
ie, P=A,. Letd, =4,4, (for J # 1,2 or n) and e equal the length of a side of the
polygon. Note that d, defined above is the diagonal from vertex 4, to 4,. So, we
have
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S,=PA,’+PA, '+ --- +PA,’+--- + P4, , + P4,
=0+e*+d}+di+ - +d}+- - +d> +é
=2nr* (by formula 3).

This is the sum of the square of each diagonal from vertex 4, and two sides of
the polygon. When a similar sum is obtained at each vertex, we have the sum of the
squares of all diagonals and all sides of the polygon counted twice. Therefore, the
sum of the square of each side and each diagonal of a regular polygon is
(n/2)(2nr?) or (nr)*.

We believe the ideas and techniques presented in this article are of value in a
junior college curriculum concerned with the method of problem solving along with
the accumulation of algebraic skills. By discovering, testing and verifying re-
lationships, many students may experience for the first time the creative aspect of
mathematics.

The following program in the BASIC language was used to obtain the data for
Tables 1 and 2.

5 PRINT ‘WHAT ARE THE VALUES OF THE RADIUS (R), THE
NUMBER’
8 PRINT ‘OF EQUALLY SPACED POINTS (N), AND THE X’
10 PRINT ‘COORDINATE (FOR —R < = X < = R) OF THE POINT P’;
20 INPUT R, N, X
30 LET Y = SQR (R**2 — X**2)
40 LET T = 2*3.1416 /N
50 FOR J=1TON
60 LET A = R* COS((J — 1)*T)
70 LET B = R* SIN ((J — 1)*T)
80 LET D2 = (X — A)**2 + (Y — B)**2
90 LET S=S + D2
100 NEXT J
110 LET S = INT (1000*S +.5),/1000
120 PRINT
130 PRINT ‘FOR R =’; R; ‘N =" N; ‘AND THE POINT P (; X; 4 Y;
140 PRINT ‘THE SUM IS’; S
150 END

One winter day (back in the 1930’s) a visiting Polish mathematician
complained that his room was so hot that he couldn’t sleep. I asked him, “Did
you try opening the window?” He answered, in tones of shocked incredulity,
“In Poland we don’t open windows.”

Ralph P. Boas
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