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Simple geometric concepts and constructions are so important to a beginning
student’s understanding of complex variables that, as teachers, we should seize
every opportunity to exploit this mode of exposition—what we may lose in rigor we
surely gain in insight. There is no better way to illustrate this thesis than with
Euler’s exponential function of purely imaginary argument, e’®, arguably the most
important and useful function in the theory of complex variables.

Most elementary texts define this function by

e =cos@+isin6 (1)

and then proceed to establish its properties from those of sin 6 and cos 8. This may
be satisfactory for students who are comfortable defining functions by power
series, but most students visualize the trigonometric functions through their
geometric definitions rather than as power series, and from the geometric point of
view identifying a combination of trigonometric functions with the exponential e®
seems totally unmotivated.

I think the usual approach is backwards. The function e(8) whose value is the
point on the unit circle with argument 8 has simpler properties than sin § and
cos 6, and its geometric definition is more natural. In particular:

o The mysterious addition formulas for cos(6 + ¢) and sin(8 + ¢) follow imme-
diately from the simple addition formula e(8 + ¢)=e(8)e(¢), which just
expresses the geometric definition of complex number multiplication.

« In contrast to the differentiation formulas for sin § and cos 6, the validity of

e'(0)=ie(9) (2)

is obvious geometrically.

o The Taylor expansion (with remainder) for e(9)—which justifies its identifica-
tion with e’®—can, as I show, be given a simple geometric derivation and
interpretation. Each term represents a step along an ever-tightening rectangu-
lar spiral that approaches the point e(6), and the bound for the remainder just
expresses the fact that the distance along a curve between two points is never
shorter than the straight-line distance between these points. Remarkably, the
geometrical construction of the Taylor series does not require knowledge of the
derivatives of e(6)!

6 THE COLLEGE MATHEMATICS JOURNAL



We begin by introducing a Cartesian coordinate system in the Euclidean plane,
denoting the origin by O and the point a unit distance away on the x-axis by P.
Complex numbers are defined to be vectors (or equivalently points) in the plane,
addition is defined by the usual parallelogram law, and multiplication of a complex
number by a real number is the usual multiplication of a vector by a scalar (a
stretch or a shrink, with a reversal of direction if the scalar is negative). All these
are standard straightedge and compass constructions.

We define multiplication by the triangle law illustrated in Figure 1. The product
of two complex numbers Q and R is found by constructing a triangle SOR similar
to triangle QOP. Thus, because |OP| =1,

|OS| =10Q| - |OR|, and £SOP= ,QOP+ L ROP. (3)

That is, to multiply two complex numbers, we multiply their magnitudes and add
their angles. Surely this geometric definition is much more revealing to the
neophyte than the Cartesian coordinate definition of multiplication, (u + iv) - (x +
iy) = (ux —vy) + i(uy + vx). Note that if, as is customary, we identify the complex
numbers on the x-axis with the real numbers, the rule for multiplying a complex
number by a real number can be considered a degenerate case of the triangle law
for the product of two complex numbers.

0 P

Figure 1
The triangle law of multiplication.

This geometrical definition of multiplication suggests, immediately, that we
introduce the polar form of a nonzero complex number. Thus let a ray from the
origin through a typical complex number z make an angle # with the positive
x-axis, and let e(#) denote the point where this ray intersects the unit circle, as in
Figure 2. Then

z=|zle(8). (4)
The following properties of e(8) are then obvious.

e |e(8)| =1 because e(9) is on the unit circle.

e e(0+2)=e(0) because the circumference of the unit circle is 2.

o e(0) e(p)=e(8 + @), the exponential property, because to multiply complex
numbers of magnitude 1, we just add their angles.
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z=|zle(8)

e(8 + AG)

Figure 2
The function e() as a point on the unit circle.

Now by definition cos 8 and sin § are the real and imaginary parts of e(9),
cosf +isinf=e(0) (5

and the addition formulas for the cosine and sine are equivalent, in view of the
exponential property, to the coordinate rule for multiplication of complex num-
bers:

e(0)-e(¢p) =(cos® +isinh) - (cos ¢ +ising)
= (cos @ cos ¢ — sin 6 sin ¢) + i(cos 8 sin ¢ + sin 6 cos ¢)
e(0+¢)=cos(8+¢)+isin(8+¢).

From Figure 2 it is also clear that if A@ is small, then the vector difference
e(8 + AB) — e(9) is nearly perpendicular to e(#)—that is, parallel to ie(8)—and
nearly of length |A@|. Thus the derivative formula

e'(0) = lim %e(@ +A0) —e(8) =ie()

is geometrically plausible. We will give a rigorous proof as soon as we have
established Taylor’s formula for e(8).

Thus consider Figure 3, which shows a sequence of points Py, P, P,,...,
constructed by means of a sequence of involutes as follows. First, P, = O, and
P, =P, the point a unit distance from O on the positive x-axis. The point P, is
found by unwinding a string, initially stretched along the arc of the unit circle from
P, to P,=e(6), until it makes a right angle with the segment PyP,. The string,
which generates the involute P, P,, is shown in partially unwound position P,P;P;.
Another string, stretched along the involute P, P,, shown in its partially unwound
position P, P} P}, generates an involute P,P,, and so on. Let s,(¢) denote the
directed distance along the generator P, P, .. Then, as seen from Figure 3,
so{p) =1 and s,(¢p)=¢. A general formula for s,(¢p) can be found by the
following bit of seventeenth-century style calculus.

Suppose the indicated angle ¢ is increased by an infinitesimal d¢. Then, as
shown in the insert in Figure 3, considering the infinitesimal arcs of the involutes
to be circular arcs, we find that ds,, ., =s,(¢)d¢. Thus s, (0) = [Is,($)de,
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Generators of successive involutes form a rectangular spiral approaching e(8).

and since s4(8) = 1 it follows by induction that

m

Sm(9)=ﬁ’ m=0,1,2.... (6)

Recalling that multiplication by i rotates a complex number (vector) counter-
clockwise through a right angle, we have P, —Py=s,(0)=1, P,— P, =is(0) =
i0, Py — P, =i%,(0) = (i6)*/2!,...

(i6)"

m!

P, —P,=i"s,(0)= m=0,1,2,.... (7

If we now start at the origin P, and march along the rectangular spiral
P,P,P,... P, the final point P, differs from P, =e(9) by

IR, (0)] =|e(8) — [50(8) +is,(8) +i%5,(0) + - -~ +i"s,(8)]]

e0) - 3, 19

k=0 k!

®)

The length of the line segment, |R,(0)], is less than the length of the involute
P, . ,P, joining its endpoints, which is

n

|0|n+1

I, 1(0) = TED
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Thus we have the Taylor formula

e(0)—1+10+(2—) : (—n)—+R (6),  where |R,,(0)|<%.

9

This means that if P(x) is the nth Taylor polynomial of the exponential function
e*, then |e(8) — P (i9)| > 0 as n — =, which justifies our setting e(8) = €.

Note that the Taylor formula with n =1 gives the promised proof of the
differentiation formula:

e(60+A0)—e(8)
A0 —l€(0)‘=

= le(0)l

e(0) -e(AB) —e(0) —ie(O)AO\
A6
e(A0) — 1 —iAd ‘ _‘RI(AO) |< [AG]

b

A6

so as A9 — 0, formula (2) follows.
With the definition of the complex exponential,

e?=e TV =%l (10)

—the polar form again!—our discussion is complete. We have introduced the
most important transcendental function of a complex variable, using only elemen-
tary calculus and emphasizing the simple geometric ideas underlying Euler’s
function e

Acknowledgment. My thanks to Paul Warne for preparing the figures.

Nothing New Under the Sun

To the Editor: The “Three-Circle Theorem” by R. S. Hu [CMJ 25:3 (May
1994) 211] is just one of a series of statements of concurrence of three
lines and collinearity of the points in the configuration formed by three
circles, the lines connecting the centers, and the bitangents, given in
Section 6-4 (“Three Circles”) of my Plane Geometry and Its Groups
(Holden-Day, 1967). The picture is Figure 6-11; the statement is the first
part of (6.31). The statement remains true for lines defined by one internal
and two external centers of homothety.

I do not know the first discoverer of the statements; my earliest source is
the high school text by August Wiegand, Dritter Cursus der Planimetrie,
enthaltend Lehren der neueren Geometrie fiir den Schulge brauch (H. W.
Schmidt, Halle, 1871).

—H. Guggenheimer, West Hempstead, NY
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