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The American Heritage Dictionary [1] defines gerrymandering as the act of “dividing
a geographic area into voting districts so as to give unfair advantage to one party in
elections.” Figure 1 illustrates this phenomenon.

Imagine the filled circles represent voters from one party, and the unfilled circles
represent voters from an opposing, minority party. Notice that in the district subdivi-
sion on the top-left, the party that is dominant in the population at large defeats the
minority party by a 5-4 vote in each of the four districts, thus winning all four con-
tested seats. Redrawing the district boundaries, however, changes the outcome signifi-
cantly. In the most surprising case, the dominant party loses three of the four districts.
If this were to occur, the minority party would control a majority of the seats in the
legislature. Furthermore, the minority party could maintain control by using their leg-
islative majority to ensure that subsequent redistricting plans would not return seats to
the dominant party. The inevitable result of this process is a collection of irregularly-
shaped districts whose boundaries are determined not by natural geographic or admin-
istrative divisions, but by political expediency. Barack Obama put it this way in his
popular book, The Audacity of Hope [9, p. 103]: “These days, almost every congres-
sional district is drawn by the ruling party with computer-driven precision to ensure
that a clear majority of Democrats or Republicans reside within its borders. Indeed,
it’s not a stretch to say that most voters no longer choose their representatives; instead,
representatives choose their voters.”
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Figure 1. Examples of gerrymandering

Gerrymandering is a hot political topic, but it is also one that involves some interest-
ing mathematics. In particular, the study of gerrymandering has led to the development
of a variety of quantitative measures of shape compactness, all of which are designed
to indicate the degree to which a geometric shape or geographic region meets certain
standards of regularity.

Maceachren [8] provides a nice summary of several such measures, classifying
them into four categories: (i) those that are based on ratios of perimeter to area;
(i1) those that compare the characteristics of circles related to the given shape (for
instance, inscribed or circumscribed circles); (iii) those that compare the given shape
to other standard shapes, such as squares or other polygons; and (iv) those that in some
way measure how far the area of the given shape is dispersed from its center. Taylor
[12] suggests that most measures of shape compactness reflect four essentially dis-
tinct characteristics of shape: elongation, indentation, separation, and puncturedness.
He argues that indentation is the most relevant to gerrymandering and proposes an
indentation index based on angles formed by the boundary of the shape or district in
question.

Chambers and Miller [6] maintain that “the sign of a heavily-gerrymandered dis-
trict is bizarre shape” and that “the most striking feature of bizarrely shaped districts
is that they are extremely non-convex.” They introduce a convexity-based “measure of
bizarreness” and calculate this measure for the congressional districts in Connecticut,
Maryland, and New Hampshire. A comparison to the familiar Schwartzberg measure
(which essentially computes the ratio of a district’s perimeter and area) suggests sig-
nificant differences between convexity-based and traditional measures of shape com-
pactness.

Here we study a simplified version of Chambers and Miller’s measure, which we
call the convexity coefficient. We present both theoretical results and empirical data
based on calculations of the convexity coefficient for all 435 U.S. congressional dis-
tricts. We then propose modifications to the convexity coefficient to account for ir-
regular state boundaries and non-uniform population distributions. Finally, we present
evidence that suggests the potential for non-intuitive outcomes when straight-line di-
visions are used to divide a state into districts.

VOL. 41, NO. 4, SEPTEMBER 2010 THE COLLEGE MATHEMATICS JOURNAL 313



The convexity coefficient

Chambers and Miller measure the compactness of a district by calculating the “prob-
ability the district contains the shortest path connecting a randomly selected pair of
its points.” [6] Here shortest path is interpreted to mean the shortest path within the
state, so the shortest path may or may not be a straight line. There may also be more
than one shortest path between a pair of points, if the state is not simply connected.
To account for this, Chambers and Miller calculate the probability that at least one of
these shortest paths is contained entirely within the district.

We will begin with a simpler measure that uses line segments in lieu of shortest
paths.

Definition 1. Let D be a subset of R%. The convexity coefficient of D, denoted
x (D), is the probability that the line segment connecting two random points in D
is contained entirely within D.

Recall that a region within IR? is said to be convex if the line segment connecting any
two of its points is contained entirely within the region. Thus, our measure calculates
the extent to which a region achieves or fails to achieve the property of convexity.

From the standpoint of gerrymandering, we believe, like Chambers and Miller, that
convexity is important. For example, attempts to group voters by common character-
istics (such as race or political preference), or to exclude certain groups of voters from
a congressional district, often lead to districts with significant indentations and/or ge-
ographic separations, such as Illinois’ 4th congressional district (see Figure 2). This
district combines two geographically separated areas whose populations are mainly
Hispanic (74.5%). The western border of the district consists of a portion of Inter-
state 294 but little of the surrounding area. This clever use of the interstate ensures
that the district is pathwise connected, or contiguous, a legal requirement in most
states.

Figure 2. Illinois’ 4th congressional district

It is not difficult to estimate an upper bound for the convexity coefficient of a district
like this. Note that whenever two points are chosen so that one point is in the northern
portion of the district and the other is in the southern portion, the line segment con-
necting these two points necessarily exits the district. Since roughly half of all such
pairs of points fall into this category, it seems that the convexity coefficient can be no
more than 0.5. This upper bound is quite generous, as the actual convexity coefficient
is approximately 0.237.
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Calculation of convexity coefficients

Calculating the exact convexity coefficient can be difficult, even for relatively simple
shapes. Consider, for instance, the region K in Figure 3. In order to calculate x (K),
we introduce a few related definitions.

Definition 2. Let D be a subset of R?, and let P = (x, y) be a point in D. A point
P’ € D is said to be visible from P (with respect to D) if the line segment connecting
P and P’ is contained entirely within D. The visible region of P, denoted Vp(P), is
the set of all points in D that are visible from P. The area of the visible region of P is
denoted Ap(P). If Vp(P) = D, then P is said to be a universal point. The set of all
universal points in D is called the universal region of D and denoted U).

Figure 3 shows the visible regions for three different points in K. Note that P;
belongs to the universal region (bounded by the dashed line in the leftmost diagram),
whereas P, and P; do not. Also, if D is a subset of R? with area A, and P is a point
in D, then the probability that a randomly selected point P’ in D will be visible from
P is given by Ap(P)/Ap. The convexity coefficient x (D) is simply the probability
that two randomly selected points are visible from each other. Thus,

A 1
x(D) = // D, y) dy = A_D// Ap(x,y)dxdy.
D

Consequently, to calculate x (D), one must first find the area of the visible region for
each point within D.

=

Figure 3. Visible regions of various points

For the region K in Figure 3, there are 10 distinct cases to consider, as the shape
of the visible region of a point P depends on the location of P within K. The in-
tegral for each of these cases can be calculated fairly easily, and doing so yields a
convexity coefficient of approximately 0.875. Now in K, the shorter sides all have
the same length. This regularity simplifies the calculations significantly. For regions
whose boundaries depend on unspecified parameters, finding a general formula for the
convexity coefficient (in terms of the parameters) can be particularly difficult. For such
regions, symmetry is an asset.

Consider, for instance, the annulus S in Figure 4, whose convexity is affected by its
puncturedness. Because the annulus is symmetric about every line passing through the
origin, the visible region for any point within the annulus has the same shape. Some
relatively straightforward geometry establishes that the area of each point’s visible
region is given in polar coordinates by

As(y, 0) = (R* — r2)<% - arcsin(£>> + R? arccos (%) —rv R?2—r2.
y
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Figure 4. An annulus, and the visible region of a given point within it.

Integrating then yields
1 2w R
x(S) =1 / As(y,0) ydydo
s JO r

7R?> —2Rry/1 — (%)2 —2r/R? — r2 4+ 2R? (arccos(%) — arcsin(%))
2 (R — 12)

Note that the value of x () is determined entirely by the relative difference between
the inner and outer radii. In particular, the larger r/R is, the less convex S is.

Empirical results

Calculating the exact value of the convexity coefficient of a region can be difficult,
even for relatively simple shapes. For congressional districts, whose boundaries are
often polygons with thousands of sides, it is practically impossible. That said, reason-
ably good approximations can be calculated easily and efficiently using Monte Carlo
methods.

To approximate the convexity coefficient of each of the 435 U.S. congressional dis-
tricts, we wrote a computer program to choose 10,000 random pairs of points within
each district, and for each pair determine if the connecting line segment was contained
entirely within the district. In other words, for each district we used 10,000 Bernoulli
trials to approximate the probability parameter p of the corresponding binomial ran-
dom variable. Using basic statistical analysis, we can say with 95% confidence that our
approximations have an error of less than 0.01. Table 1 shows the average convexity
coefficient for each of the 50 states and the District of Columbia.

Note that the average convexity coefficient varies significantly from state to state.
The best state by this measure is Wyoming, with a perfect convexity coefficient. The
worst is Maryland, with an average x of 0.367. In these extreme cases, however, one
could argue that the shape of the state itself is the primary factor in determining the
convexity coefficient. In particular, Wyoming is a nearly perfect rectangle with a single
congressional district, rendering any discussion of gerrymandering moot. On the other

316 © THE MATHEMATICAL ASSOCIATION OF AMERICA



Table 1. Average convexity coefficients by state

Alabama 0.699 || Kentucky 0.789 || North Dakota 0.999
Alaska 0.714 || Louisiana 0.754 || Ohio 0.683
Arizona 0.836 || Maine 0.674 || Oklahoma 0.776
Arkansas 0.813 || Maryland 0.367 || Oregon 0.787
California 0.646 || Massachusetts 0.599 || Pennsylvania 0.635
Colorado 0.771 || Michigan 0.778 || Rhode Island 0.631
Connecticut | 0.728 || Minnesota 0.868 || South Carolina | 0.708
DC 0.951 || Mississippi 0.801 || South Dakota 0.997
Delaware 0.855 || Missouri 0.775 || Tennessee 0.705
Florida 0.598 || Montana 0.987 || Texas 0.700
Georgia 0.829 || Nebraska 0.894 || Utah 0.838
Hawaii 0.641 || Nevada 0.719 || Vermont 0.949
Idaho 0.811 || New Hampshire | 0.709 || Virginia 0.677
Mllinois 0.664 || New Jersey 0.584 || Washington 0.746
Indiana 0.804 || New Mexico 0.831 || West Virginia 0.577
Iowa 0.806 || New York 0.655 || Wisconsin 0.842
Kansas 0.872 || North Carolina | 0.585 || Wyoming 1.000

hand, Maryland has a highly irregular border. In fact, the convexity coefficient of the
entire state is approximately 0.3133. Thus, on average, the districts within Maryland
are more convex than the state itself.

The same cannot be said for other states. Illinois, for example, is relatively convex
(x =~ 0.968), but many of its districts (see, for example, Figure 2) are not. On aver-
age, Illinois’ congressional districts are about 30% less convex than the state. This
discrepancy suggests that Illinois’ low average convexity coefficient is not simply a
consequence of a non-convex state boundary. Indeed, a quick glance at the congres-
sional districts of Illinois (see Figure 5) reveals several districts that appear to be highly

gerrymandered.

Figure 5. Congressional districts of Illinois
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The cover of this JOURNAL shows the 10 least convex U.S. congressional districts,
as measured by our convexity coefficient. Consistent with Taylor’s classification [12],
each of these districts exhibits a high degree of elongation, indentation, and/or sep-
aration. While some of these irregular features are due to irregular state boundaries,
many are not. In the next section, we propose a modification to the convexity coef-
ficient that more clearly distinguishes between naturally occurring irregularities and
those that result from gerrymandering.

State boundaries and population data

Unlike our convexity coefficient, Chambers and Miller’s measure takes into account
non-convex state boundaries by calculating the probability that the district in question
contains the shortest path within the state between any two randomly selected points.
Note that, for non-convex states, the shortest path between two points may not be a
straight line.

For example, within Maryland’s sixth congressional district, all but the easternmost
boundary is state boundary (shown by the darker line in Figure 6). As such, the shortest
path within Maryland between the two points shown is not the straight line connecting
the two points (dashed in the figure), but rather a path consisting of three distinct line
segments. Because the shortest path remains within the district, Chambers and Miller’s
measure is not negatively affected by the fact that the line segment connecting these
two points exits and re-enters the district. Our convexity coefficient, however, does
penalize this departure. Consequently, our convexity coefficient for Maryland’s 6th
district is a low 0.470, while Chambers and Miller’s measure is a much higher 0.926.

Figure 6. Two points in Maryland’s 6th congressional district

In this example, Chambers and Miller’s measure seems to reflect more accurately
the shape of the district as it relates to gerrymandering. The eastern boundary of the
district is somewhat jagged, but the indentations are relatively small. While some ger-
rymandering may have occurred, our convexity coefficient gives an artificially low
result due to its failure to account for the non-convex state boundary.

To remedy this defect, we modify our original convexity coefficient as follows. We
assume that each congressional district and state has a boundary that can be repre-
sented by a collection of polygons in R?, an assumption consistent with the bound-
ary data provided by the U.S. Census Bureau [4]. Furthermore, given a collection of
boundary polygons, standard algorithms (such as ray casting) can be used to determine
if a point is on the interior, boundary, or exterior of the corresponding district or state.

Definition 3. Let D and S each be a set of interior points for a collection of poly-
gons, with D C §. For any points p; and p; in D, p; is said to be semi-visible from
p1 (with respect to ) if the line segment connecting p; and p, intersects the boundary
of D only at points that also belong to the boundary of S. The boundary-adjusted con-
vexity coefficient of D (with respect to S), denoted x (D), is the probability that two
random points in D are semi-visible from each other.
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With this new definition, the two points in Figure 6 are semi-visible from each
other. In fact, most pairs of points in Maryland’s 6th district are semi-visible from
each other. The boundary-adjusted convexity coefficient (0.959) reflects this fact and
is much closer to Chambers and Miller’s measure (0.926) than our original convexity
coefficient (0.470).

Further discrepancies between our convexity coefficient and Chambers and Miller’s
measure can be attributed to the fact that the latter takes into account population data.
Most measures of shape compactness deal only with the geometry of the district, and
not the way the population is distributed within the district. Population, however, is
a salient issue in gerrymandering. A highly irregular district boundary is irrelevant if
the bulk of the district’s population is concentrated in a convex subset of the district’s
interior. Conversely, small indentations can be strong evidence of gerrymandering if
they occur in highly populated areas.

There is an easy way to account for population data in both the original and the
boundary-adjusted convexity coefficients: simply choose random census block loca-
tions instead of random points. Doing so ensures that points in more populated areas
are chosen with higher frequency than those in less populated areas. Thus, boundary
irregularities that affect more constituents are penalized more severely than those that
affect fewer constituents. We let X, denote the boundary-adjusted convexity coeffi-
cient, with population data incorporated as described above.

Table 2 compares x, to Chambers and Miller’s measure (denoted CM in the table)
for each congressional district in Connecticut, Maryland, and New Hampshire. The
original and boundary-adjusted convexity coefficients, without population data, are
provided as well. For most districts, X, and Chambers and Miller’s measure are quite
similar. In fact, of the 105 possible pairwise comparisons among these 15 districts, the
two measures give the same relative (i.e., ordinal) ranking 93% of the time. The two
measures yield different relative rankings for only 7 district pairs. This is significant,
since our mechanism for boundary adjustment is simpler and potentially more effi-
cient than that employed by Chambers and Miller. In particular, it does not require the
computation of a shortest path between each pair of points.

Table 2. Convexity coefficients vs. Chambers and Miller’s measure

District X X Xp CM Xp —CM
Connecticut 1 0.417 0.451 0.642 0.609 0.033
Connecticut 2 0.922  0.928 0.876  0.860 0.016
Connecticut 3 0.744  0.807 0913 0.891 0.022
Connecticut 4 0.829 0.903 0.984 0.977 0.007
Connecticut 5 0.718 0.719  0.509 0.481 0.028
Maryland 1 0.136 0974  0.908 0.549 0.359
Maryland 2 0.073 0.497 0.397 0.294 0.103
Maryland 3 0.156  0.371 0.325 0.140 0.185
Maryland 4 0.320  0.338 0.389  0.366 0.023
Maryland 5 0.313 0.869 0.542 0.517 0.025
Maryland 6 0.470 0959 0924 0.926 -0.002
Maryland 7 0.745 0.760  0.769  0.732 0.037
Maryland 8 0.742  0.810 0.678 0.657 0.021

New Hampshire 1~ 0.750  0.784  0.809  0.801 0.008
New Hampshire 2 0.671 0.733  0.572  0.561 0.011

Average 0.534  0.727 0.682  0.624 0.058
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The difference between the two measures is largest for Maryland’s 1st, 2nd, and
3rd congressional districts. The discrepancies may be due to the fact that all three of
these districts are disconnected, which poses a potential problem for calculating the
shortest path between two points. Chambers and Miller do not specifically describe
their convention for dealing with disconnected districts, but it seems reasonable to
infer that the mechanism they employ penalizes disconnection more harshly than ours.

It is also worth noting that when j, is calculated for the districts on the cover, all
10 districts experience some improvement from their original convexity coefficients,
but only three ultimately exceed a value of 0.5. For Maryland’s first congressional
district, ¥, is approximately 0.958, a reflection of the fact that most of the lack of
convexity in this district can be attributed to islands and indentations in its western
coastal boundary. Likewise, Florida’s 18th district and California’s 46th district see
improvements to 0.688 and 0.675, respectively. These improvements can be attributed
to the fact that the original convexity coefficient penalizes the separation caused by
islands within the districts, whereas the boundary-adjusted coefficient does not.

Of the six states in Table 1 with the lowest average convexity coefficients (all un-
der 0.6), only Maryland and West Virginia see a significant improvement when state
boundaries and population data are taken into account. Maryland’s average improves
to 0.617, and West Virginia’s to 0.756 (from 0.367 and 0.578, respectively). Of the re-
maining four states, two (Massachusetts and New Jersey) see an increase of less than
0.05, and two (Florida and North Carolina) actually experience a decrease (to 0.586
and 0.559, respectively). From this data, we can conclude that the lack of convexity
exhibited by the districts within these four states is not due to irregular state boundaries
or even irregular district boundaries that affect relatively few constituents. Indeed, in
the case of Florida and North Carolina, the fact that x, < x suggests that the irregular
district boundaries within these states occur in more populated areas and therefore can
be attributed at least in part to gerrymandering.

Finally, as one might expect from Figure 5, accounting for state boundaries and
population data does not yield a significant improvement in the average convexity
coefficient within the state of Illinois. In fact, these factors only increase the convexity
coefficient from 0.664 to 0.677.

Straight-line divisions

As we have demonstrated, convexity-based measures of shape compactness can be ef-
fective for identifying irregularly shaped and potentially gerrymandered congressional
districts. But what if one’s goal is not to analyze, but rather to prescribe, a districting
plan?

At least one answer to this question is apparent: Any district defined by a sequence
of straight-line divisions (that is, by intersecting of one or more half-planes and pos-
sibly the state boundary) necessarily yields a boundary-adjusted convexity coefficient
of 1. As such, methods like the shortest splitline algorithm proposed by the Center for
Range Voting [5] are ideal from the standpoint of convexity, other practical critiques
notwithstanding. Using straight lines to define district boundaries is natural and in-
tuitive. In fact, one might conjecture that straight-line divisions always yield districts
that are more convex than the states they belong to. We believe, however, that this is
not the case. Our reasoning is based on the following theorem, which follows easily
from Definitions 1 and 2.

Theorem. Let S be a polygonal region, and let Dy and D- be disjoint subsets of S
such that Dy U Dy, = S. Let x1 = x(Dy), x2 = x(D,), and let x,, denote the proba-
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bility that a random point in D is visible from a random point in D,. Furthermore let
Ay and A, denote the areas of Dy and D, respectively, so that the area of S is equal
to A=A+ A, Then

s (M ’ Lo (A, (A ’
X =\ X1 A2 X12 A X2-

A
Furthermore, if Ay = Ay = > then

1 1
S) = - —X12.
x(S) 4(X1+X2)+2X12

A consequence of this theorem is that the weighted average of x; and y,, with
weights (%)2 and (%)2, can be maximized by minimizing x;,. In other words, to
maximize the average convexity coefficient resulting from a single, straight line divi-
sion of a state, the dividing line should create two districts whose points are minimally
visible from each other. Consider, for example, the bowtie-shaped state in Figure 7. A
single, vertical cut through the middle of the state yields two districts, each having a
convexity coefficient of 1, a significant improvement from the entire state’s convexity
coefficient of just over 0.5. For this division, x; is close to zero, thus illustrating the
fact that a minimal value of y;, yields a maximal value of x; and 5.

Surprisingly, such improvement is not always possible. Let S denote the star-shaped
region in Figure 8. Each point on the x-axis defines a unique line that divides S into two

equal-area districts. Furthermore, all equal-area dividing lines can be identified with a

Figure 7. A bowtie-shaped state

<

Figure 8. A star-shaped region, with three equal-area straight line divisions
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point on the x-axis, with the exception of the horizontal dividing line coinciding with
the x-axis, which by symmetry yields the same division as the vertical line coinciding
with the y-axis.

Figure 9 shows the approximate values of x;, x2, x12, and x(S) for the dividing
lines corresponding to various x-values. Notice that xi, is always greater than yx (S),
which implies, by the preceding theorem, that the weighted average of x; and x, must
always be less than x (S). In fact, for each value of x, the corresponding equal-area
dividing line yields values of x; and x, that are both less than y (S).

0.8
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0.7 AXIZAA AA AAA
4 N~V X~/ V.Y Y §
0.65 YACH)
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Figure 9. Convexity coefficients for equal-area divisions of a star-shaped region

These data suggest the following conjecture:

There exists a polygonal region S such that, for every possible straight-line divi-
sion of § into two equal-area subregions, D, and D,, both x (D) and x (D;) are
less than x (S).

We have not been able to prove this conjecture, but the above example seems to
support it. If it is true, then apart from the theoretical curiosity of the result, one impli-
cation is that comparison of district convexity coefficients to those of their containing
states may not be an accurate way to assess whether gerrymandering has occurred.
Rather, more sophisticated methods, such as those described in the previous section,
should be used to distinguish natural irregularities in state boundaries from evidence
of true gerrymandering.

Finally, it should be noted that, just as a low convexity coefficient does not neces-
sarily imply gerrymandering, a high convexity coefficient is not conclusive evidence
of its absence. Figure 10 shows that, with some clever choices and the right popula-
tion distribution, even perfectly rectangular districts can be manipulated to favor one
party over another. Vickrey [13] gives a similar example. Nonetheless, it seems rea-
sonable to conclude that gerrymandering is considerably more difficult when districts
are required to be convex (or nearly so).

Applications and further reading

There are a number of theoretical questions to ask about convexity coefficients; for
instance, what types of transformations preserve the convexity coefficient of a given
region? There are also numerous practical questions; for instance, how consistent is
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Figure 10. Gerrymandering with convex (rectangular) districts

the convexity coefficient with the way humans intuitively classify shapes according to
their regularity? If a group of individuals were asked to rank a set of shapes accord-
ing to certain attributes associated with geometric regularity, would their rankings be
consistent with those induced by the convexity coefficients of the shapes?

In addition to gerrymandering, convexity coefficients would appear to apply to other
areas such as fair division, image recognition, and machine vision. For instance, pre-
liminary investigations show significant differences in the convexity coefficients of
various letters in the English alphabet. It may be possible, therefore, to use convex-
ity coefficients to help decipher blurred or distorted text, an essential component of
applications such as breaking internet captchas [2].

We are certainly not the first to study convexity, or to apply it to shape character-
ization problems. Chambers and Miller’s “measure of bizarreness” is similar to that
of Zuni¢ and Rosin [14]. Schneider [10] uses Minkowski addition to measure convex-
ity, devising a measure similar to that of Arrow and Hahn [3]. For a more detailed
treatment of Minkowski addition, see Schneider [11]. For a general introduction to the
geometry of convex sets, see Coppel [7].
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Summary. Convexity-based measures of shape compactness provide an effective way to iden-
tify irregularities in congressional district boundaries. A low convexity coefficient may suggest
that a district has been gerrymandered, or it may simply reflect irregularities in the correspond-
ing state boundary. Furthermore, the distribution of population within a district can either
amplify or lessen the effects of boundary irregularities. As such, it is essential to take both
population data and state boundaries into account when using convexity coefficients to detect
gerrymandering. Our boundary-adjusted convexity coefficient provides an efficient way to do
s0, and it yields results similar to the shortest-path approach taken by Chambers and Miller.
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