## Devlin's Angle |

I believe the comparison is entirely apt, in several ways. First, though, a few words about Witten the man. He was born 26 August 1951 in Baltimore, Maryland. He studied at Brandeis University, where he received his BA in 1971. From Brandeis he went to Princeton, where he received an MA in 1974 and a Ph.D. in 1976. He was a postdoctoral fellow at Harvard for 1976-77, then a junior Fellow there for 1977-80. In 1980 he was appointed a Professor at Princeton University, from where he moved across town to the Institute for Advanced Study in 1987.

Now to the comparison of Witten with Newton. Although there is no doubt that Witten is a physicist, like Newton he is a powerful mathematician. Very much in the tradition of Newton, Witten's mathematics arises out of physics -- he does his mathematics in order to advance his -- and hence our -- understanding of the universe. The British mathematician Sir Michael Atiyah has written of Witten that:

"... his ability to interpret physical ideas in mathematical form is quite unique." [Michael Atiyah:Atiyah's words were written in 1990, on the occasion when the international mathematical community give Witten their most prestigious award, a Fields Medal, often described as the mathematicians' equivalent of a Nobel Prize. In addition to the Fields Medal, physicist Witten has been invited to give two major addresses at national meetings of the American Mathematical Society: he was AMS Colloquium Lecturer in 1987 and three years ago, in 1998, he gave the Gibbs Lecture.On the work of Edward Witten,Proceedings of the International Congress of Mathematicians, Kyoto, 1990 (Tokyo, 1991), pp.31-35.]

Like Newton, the physics Witten does is deep, fundamental, and center stage. Both men set out to answer ultimate questions about the nature of the world we live in. In Witten's case, he works in the hot research areas of supersymmetry and string theory.

Just as questions in physics led Newton to develop some far reaching new mathematics that found many applications, often well outside of physics, so too Witten's mathematics has been of a depth and originality (and incidentally of a difficulty equaled by few mathematicians) that will surely find other applications. Witten has used infinite dimensional manifolds to study supersymmetric quantum mechanics. Among the results for which he was awarded a Fields Medal was his proof of the classic Morse inequalities, relating critical points to homology.

Witten's work in manifold theory brings up yet another comparison with Newton. Neither of them were concerned with finding mathematically correct proofs to support their arguments. Relying on their intuitions and their immense ability to juggle complicated mathematical formulas, they both left mathematicians reeling in their wake. It took over two hundred years for mathematicians to develop a mathematically sound theory to explain and support Newton's method of the infinitesimal calculus. Similarly, it might take decades -- maybe even centuries -- before mathematicians can catch up with Witten. Commenting on this state of affairs in a presentation at a Millennium Meeting at the University of California at Los Angeles, in August 2000, Witten said:

"Understanding natural science has been, historically, an important source of mathematical inspiration. So it is frustrating that, at the outset of the new century, the main framework used by physicists for describing the laws of nature is not accessible mathematically.'' [Edward Witten:British mathematician Sir Michael Atiyah, wrote of Witten's work:Physical Law and the Quest for Mathematical Understanding.]

"... he has made a profound impact on contemporary mathematics. In his hands physics is once again providing a rich source of inspiration and insight in mathematics. Of course physical insight does not always lead to immediately rigorous mathematical proofs but it frequently leads one in the right direction, and technically correct proofs can then hopefully be found. This is the case with Witten's work. So far the insight has never let him down and rigorous proofs, of the standard we mathematicians rightly expect, have always been forthcoming." [Michael Atiyah:This feature of Witten's work not only tells us that Witten is a remarkable physicist, it also says something about mathematics. For all that mathematics is a product of the human mind, the very logical rules that have to be satisfied for mathematical creations toOn the work of Edward Witten.]

As a mathematician, when I work on a
mathematical problem, my sense is very much one of discovering facts
about some pre-existing (abstract) world "out there". If I try hard
enough,
and am lucky, I'll discover the right path that leads me to my goal, and
I'll
solve the problem. If I fail, sooner or later someone else will come along
and find the path. Very likely I'll then see that it's *the very path I
was trying
to find!*

Nevertheless, for all that mathematical research feels like discovery, I firmly believe that mathematics does not exist outside of humans. It is something we, as a species, invent. (I don't see what else it could be.)

But mathematical invention is not like invention in music or literature.
If Beethoven had not lived, we would never have heard the piece we
call his Ninth Symphony. If Shakespeare had not lived, we'd never have
seen Hamlet. But if, say, Newton had not lived, the world would have
gotten
calculus sooner or later, and *it would have been exactly the same!*
Likewise,
if Witten had not lived we'd have obtained his results eventually.
(Although
the wait would almost certainly have been much longer for Witten's work
than it was for calculus.)

Since mathematical creativity is not tied exclusively to one particular individual, the patterns of mathematics must tell us something very deep and profound about the human brain and the way we interact with our environment. If you want, you can "reify" (objectify) the results of that interaction and think of it as an "outside (Platonic) world". But to my mind that's just playing with words. A much more honest way to think of it, I suggest, is that our mathematical creations arise from the world we live in and are constrained by our experience of that world. This means that, very occasionally, a person such as Ed Witten can come along whose understanding of the physical world is so good that he can bypass the normal methods of mathematical discovery and "see", directly, the results that the rest of us can, at best, stumble upon.

The result is that mathematicians are able to get occasional glimpses of the mathematics of tomorrow -- or possibly even the next century. For me, and I'm sure for many fellow mathematicians, that alone is good reason to say:

Happy fiftieth birthday, Ed Witten.

Devlin's Angle is updated at the beginning of each month.