Loci, 2008
Generalized Baseball Curves: Three Symmetries and You're In! Allison, Diaz, and Miller

14. Links and references


  1. D. Allison, R. Diaz, and N. Miller. Generalized baseball curves: An analytic perspective. In preparation, n.d.
  2. N. V. Efimov. Nekotorye zadachi iz teorii prostranstvennykh. Usp. Mat. Nauk, 2: 193-194, 1947.
  3. P. Erdös. Spiraling the earth with C. G. Jacobi. Am. J. Phys., 68 (10): 888-895, 2000.
  4. W. Fenchel. The differential geometry of closed space curves. Bull. Amer. Math. Soc., 57: 44-45, 1951.
  5. A. Gray. Modern Differential Geometry of Curves and Surfaces with Mathematica. CRC Press, Boca Raton, second edition, 1998.
  6. D. Henderson. Differential Geometry: A Geometric Introduction. Prentice-Hall, New Jersey, 1998.
  7. D. Henderson and D. Taimina. Experiencing Geometry: Euclidean and Non-Euclidean With History. Prentice-Hall, New Jersey, 3rd edition, 2005.
  8. M. Hirsch, S. Smale, and R. Devaney. Differential Equations, Dynamical Systems, and An Introduction to Chaos. Elsevier, San Diego, CA, second edition, 2004.
  9. C.-C. Hwang. A differential geometric criterion for a space curve to be closed. Proc. Amer. Math. Soc., 83: 357-361, 1981.
  10. F. López-López. Question #48. Is there a physical property that determines the curve that defines the seam of a baseball? American Journal of Physics, 64 (9): 1097, 1996.
  11. R. Millman and G. Parker. Elements of Differential Geometry. Prentice-Hall, New Jersey, 1977.
  12. Y. Nikolaevsky. On Fenchel's problem. Mathematical Notes, 56: 87-89, 1994.
  13. P. Scofield. Curves of constant precession. Amer. Math. Monthly, 102 (6): 531-537, 1995.
  14. R. Thompson. Designing a baseball cover. College Mathematics Journal, 29 (1): 48-61, 1998.
  15. D. von Seggern. Practical Handbook of Curve Design and Generation. CRC Press, Boca Raton, FL, 1994.
  16. E. W. Weisstein. Baseball cover, n.d. From MathWorld-A Wolfram Web Resource.