![]() |
Ivars Peterson's MathTrek |
November 17, 2003
One of my more distinct recollections of math class involves the decimal representation of rational numbers and the discovery of wonderful patterns among those digits.
Consider the fraction 1/7. Expressed as a decimal, it has the form 0.142857142857. . . , where the digits 142857 are repeated, ad infinitum. The surprise to me as a child was learning that the fraction 2/7 has the same decimal digits but in a different order: 0.285714285714. . . . This is also true for 3/7 (0.4285714285714. . . ), 4/7 (0.571428571428. . . ), 5/7 (0.714285714285. . . ), and 6/7 (0.857142857142. . . ).
To my young mind, that was an amazing, inexplicable patterna glimpse into the mysteries of numbers. What made the thrill of discovery even stronger for me was how the digits emerged one by one as I laboriously performed the long division operations needed to get the answers. There were no calculators in those days, and it's possible that using a calculator would have eliminated much of the suspense and surprise.
I was reminded of this scene from my distant past when I recently saw an article by Francesco Calogero of the University of Rome "La Sapienza" in the current issue the Mathematical Intelligencer.
In his report on "cool" irrational numbers and their rational approximations, Calogero starts off with the example of 10/81. Expressed in decimals, this fraction has the value 0.123456790, with these digits endlessly repeated in the same order. Only the digit 8 is missing from the sequence.
According to Calogero, that defect can be corrected by subtracting from 10/81 a number of order 109 so as to change the last two of the first nine decimal digits from 90 to 89. He comes up with the following expression:
10/81 109 (3340/3267).
In decimal form, it has the value (to 101 decimal places) 0.123456789101112131415161718192021222324252627282930313233343536
37383940414243444546474849505152535455. . . .
That's remarkable!
Try the fraction 1000/998001, or (23 x 52)/(36 x 372).
In decimal form, it has the value (to 100 decimal places) 0.001002003004005006007008009010011012013014015016017018019020021
022023024025026027028029030031032033034. . . .
In his article, Calogero goes on to provide an explanation for such "numerology" and offers several additional examples of numbers that display remarkable patterns when written out in decimal form.
Ah, sweet mystery of rational number!
Copyright 2003 by Ivars Peterson
References:
Calogero, F. 2003. Cool irrational numbers and their rather cool rational approximations. Mathematical Intelligencer 25(No. 4):72-76.
For a song about positive rational numbers, see http://www.songsforteaching.com/GuffeePRN.html.
For a song about positive rational numbers, see http://www.songsforteaching.com/guffee/positiverationalnumbers.htm.
Comments are welcome. Please send messages to Ivars Peterson at ip@sciserv.org.
A collection of Ivars Peterson's early MathTrek articles, updated and illustrated, is now available as the Mathematical Association of America (MAA) book Mathematical Treks: From Surreal Numbers to Magic Circles. See http://www.maa.org/pubs/books/mtr.html.