You are here

MAA Distinguished Lecture Series

The MAA sponsors a variety of public lectures, many of them held at the MAA Carriage House. Whether a Gathering 4 Gardner event or part of the NSA-funded Distinguished Lecture Series, the lectures feature some of the foremost experts within the field of mathematics, known for their ability to make current mathematical ideas accessible to non-specialists. The presentations provide a fabulous and fun learning opportunity for both professionals and students, as well as anyone interested in learning more about current trends in mathematics and the relationship between mathematics and broader scientific, engineering and technological endeavors.

Abstracts and speaker biographies will appear on this page as lectures are added to the events calendar.

Slidecasts and video clips of MAA public lectures are available here.

Join our mailing list for updates.


Dummy View - NOT TO BE DELETED

Robert L. Devaney, Boston University
Wednesday, June 27, 2012

Abstract: We will describe some of the beautiful images that arise from the "Chaos Game."  We will show how the simple steps of this game produce, when iterated millions of times, the intricate images known as fractals. We will describe some of the applications of this technique used in data compression as well as in Hollywood.  We will also challenge members of the audience to "Beat the Professor" at the chaos game and perhaps win his computer.

MAA Distinguished Lecture - >Robert L. Devaney

Biography: Robert L. Devaney is currently Professor of Mathematics at Boston University and President-Elect of the Mathematical Association of America. He received his undergraduate degree from the College of the Holy Cross in 1969 and his Ph.D. from the University of California at Berkeley in 1973 under the direction of Stephen Smale. He taught at Northwestern University and Tufts University before coming to Boston University in 1980.

His main area of research is dynamical systems, primarily complex analytic dynamics, but also including more general ideas about chaotic dynamical systems. Lately, he has become intrigued with the incredibly rich topological aspects of dynamics, including such things as indecomposable continua, Sierpinski curves, and Cantor bouquets.

He is the author of over one hundred research papers in the field of dynamical systems as well as a dozen pedagogical papers in this field. He is also the (co)-author or editor of fourteen books in this area of mathematics.

In 1994 he received the Award for Distinguished University Teaching from the Northeastern section of the MAA and in 1995 he was the recipient of the MAA Deborah and Franklin Tepper Haimo Award for Distinguished University Teaching. In 2005 he received the Trevor Evans Award from the MAA for an article entitled Chaos Rules published in Math Horizons.

In 1996 he was awarded the Boston University Scholar/Teacher of the Year Award. In 2002 he received the National Science Foundation Director's Award for Distinguished Teaching Scholars. In 2002 he also received the ICTCM Award for Excellence and Innovation with the Use of Technology in Collegiate Mathematics. In 2003 he was the recipient of Boston University's Metcalf Award for Teaching Excellence. In 2004 he was named the Carnegie/CASE Massachusetts Professor of the Year. In 2009 he was inducted into the Massachusetts Mathematics Educators Hall of Fame. And in 2010 he was named the Feld Family Professor of Teaching Excellence at Boston University.

Read more about Robert Devaney's lecture


Fernando Gouvêa, Colby College
Monday, May 21, 2012

Fernando Gouvêa broke with convention for the lecture he presented on May 21. Mathematicians giving public lectures know, the Colby College professor explained, that the “person in the street” thinks math is all and only about numbers. To counteract this misconception and to raise awareness of the diversity within mathematics, presenters tend to steer clear of the topic.

But not Gouvêa. He devoted his historical talk, titled “Games Numbers Play,” to showing his audience that, given an inquisitive mind and perhaps a handful or two of pebbles, you can become an active observer of “the strange games that numbers play among themselves.” Doing so, Gouvêa hinted, allows you to transform mathematics into not only a source of amusement but also an endless pursuit.

Keep reading...


Jill Pipher, Brown University
Monday, April 30, 2012

Abstract: The role of experimentation and computation in mathematics is historical, rich, and growing and changing at a remarkable pace. Computers are more than number crunchers: They check hypotheses, make conjectures, enable discoveries, and assist in proofs. While the computer is the primary tool facilitating experimentation, it is not the only source of experimental information bringing new ideas into mathematics. I illustrate these points by describing a collection of fun examples. In the first part of the talk, I'll explain some aspects of this interaction related to my own research interests in public key cryptography. Then I'll give a quick tour of some fundamental and surprising instances of the interaction of mathematics and the computer.

​Biography: Jill Pipher is Professor of Mathematics at Brown University, and Director of the Institute for Computational and Experimental Research in Mathematics (ICERM). She received her Ph.D. from UCLA in 1985, spent five years at the University of Chicago as Dickson Instructor and then Assistant Professor, and came to Brown as an Associate Professor.

Pipher’s research interests include harmonic analysis, partial differential equations, and cryptography. She has published papers in each of these areas of mathematics, co-authored an undergraduate cryptography textbook, and jointly holds four patents for the NTRU encryption and digital signature algorithms. She was a co-founder of NTRU Cryptosystems, Inc, now part of Security Innovation, Inc. Her awards include an NSF Postdoctoral Fellowship, NSF Presidential Young Investigator Award, Mathematical Sciences Research Institute Fellowship, and an Alfred P. Sloan Foundation Fellowship. In February 2011, she became President of the Association for Women in Mathematics.

Read more about Jill Pipher's lecture


Richard D. De Veaux, Williams College
Wednesday, April 11, 2012

Abstract: Can government agencies really track what you are doing? Do credit card companies know what you are going to purchase before you do? And what about social networks? How much of your information do you want available - and what are they doing with it? In this talk, I will share some of my experiences as a data mining and statistical consultant for groups as varied as American Express, the National Security Agency, the office of the Attorney General of Vermont, and the Comptroller's Office of New York State. I'll talk about the methods analysts use to mine these large data repositories, what the limits are, and what the future might hold.

Biography: Richard (Dick) D. De Veaux is Professor of Statistics at Williams College. He holds degrees in Civil Engineering (B.S.E. Princeton), Mathematics (A.B. Princeton), Dance Education (M.A. Stanford), and Statistics (Ph.D., Stanford), where he studied with Persi Diaconis.

Before Williams, Dick taught at the Wharton School and the Engineering School at Princeton. He has also been a visiting research professor at INRA (the Institut National de la Recherche Agronomique) in Montpellier, France; the Université Paul Sabitier in Toulouse, France; and the Université René Descartes in Paris. De Veaux has won numerous teaching awards including a "Lifetime Award for Dedication and Excellence in Teaching" from the Engineering Council at Princeton. He has won both the Wilcoxon and Shewell (twice) awards from the American Society for Quality and was elected a fellow of the American Statistical Association (ASA) in 1998. In 2006-2007 he was the William R. Kenan Jr. Visiting Professor for Distinguished Teaching at Princeton University. In 2008 he was named the Mosteller Statistician of the Year by the Boston Chapter of the ASA.

Read more about Richard De Veaux's lecture


Tim Chartier, Davidson College
Tuesday, February 28, 2012

Abstract: Every year, people across the United States predict how the field of teams will play in the Division I NCAA Men’s Basketball Tournament by filling out a tournament bracket for the postseason play. This talk discusses two popular rating methods that are also used by the Bowl Championship Series, the organization that determines which college football teams are invited to which bowl games. The two methods are the Colley Method and the Massey Method, each of which computes a ranking by solving a system of linear equations. We also touch on how to adapt the methods to take late season momentum into account.

​Biography: Tim Chartier is an Associate Professor of mathematics at Davidson College. His ability to communicate math both in and beyond the classroom were recognized with the Henry L. Alder Award for Distinguished Teaching by a Beginning College or University Mathematics Faculty Member from the Mathematical Association of America.  His research and scholarship were recognized with an  Alfred P. Sloan Research Fellowship. Tim serves on the Editorial Board for Math Horizons, a mathematics magazine of the Mathematical Association of America. He also serves as chair of the Advisory Council for the Museum of Mathematics. Tim has been a resource for a variety of media inquiries which includes fielding mathematical questions for the Sports Science program on ESPN.

Read more about Tim Chartier's lecture


Pages