You are here

MAA Distinguished Lecture Series

The MAA sponsors a variety of public lectures, many of them held at the MAA Carriage House. Whether a Gathering 4 Gardner event or part of the NSA-funded Distinguished Lecture Series, the lectures feature some of the foremost experts within the field of mathematics, known for their ability to make current mathematical ideas accessible to non-specialists. The presentations provide a fabulous and fun learning opportunity for both professionals and students, as well as anyone interested in learning more about current trends in mathematics and the relationship between mathematics and broader scientific, engineering and technological endeavors.

Abstracts and speaker biographies will appear on this page as lectures are added to the events calendar.

Slidecasts and video clips of MAA public lectures are available here.

Join our mailing list for updates.


Dummy View - NOT TO BE DELETED

James A. Yorke, University of Maryland
Thursday, November 17, 2011

Abstract: Chaos is a real-world phenomenon that arises in many different contexts, making it difficult to tell exactly what chaos is. Yorke will give examples of the aspects of chaos.

Biography: James A. Yorke earned his bachelor's degree from Columbia University in 1963. He came to the University of Maryland for graduate studies, in part because of interdisciplinary opportunities offered by the faculty of the Institute for Physical Sciences and Technology (IPST). After receiving his doctoral degree in 1966 in Mathematics, Yorke stayed at the University as a member of IPST. Today he holds the title of Distinguished University Professor and also is a member of the Mathematics and Physics Departments.

Professor Yorke's current research projects range from chaos theory and weather prediction and genome research to the population dynamics of the HIV/AIDS epidemic. He is perhaps best known to the general public for coining the mathematical term "chaos" with T.Y. Li in a 1975 paper entitled "Period Three Implies Chaos," published in the American Mathematical Monthly. "Chaos" is a mathematical concept in nonlinear dynamics for systems that vary according to precise deterministic laws but appear to behave in a random fashion.

Read more about James Yorke's lecture


Ezra "Bud" Brown, Virginia Tech
Wednesday, September 21, 2011

Ezra Brown

Abstract: In the world of discrete mathematics, we encounter a bewildering variety of topics with no apparent connection between them. There are block designs in combinatorics, finite projective planes in geometry, round-robin tournaments and map colorings in graph theory, (0, 1)- matrices in linear algebra, quadratic residues in number theory, error-correcting codes on the internet, and the torus at the doughnut shop.

But appearances are deceptive, and this talk is about the (7,3,1) design, a single object with many names that connects all of these topics. Along the way, we'll learn how Leonhard Euler was once spectacularly wrong, how P. J. Heawood was almost completely right, and what happened when Richard Hamming got mad at a computer.

Read more about Bud Brown's lecture


Bart de Smit, Leiden University
Monday, April 4, 2011

Abstract: In a paper by de Smit and Hendrik Lenstra (Notices of the AMS, April 2003), it is shown that well known mathematical results about elliptic curves imply that what Escher was trying to achieve in this work has a unique mathematical solution. This discovery opened up the way to filling the void in the print. With help from artists and computer scientists, a completion of the picture was constructed at the Universiteit Leiden. The white hole turns out to contain the entire image on a smaller scale, which in the Dutch language is known as the Droste effect, after the Dutch chocolate maker Droste. In the talk, the mathematics behind Escher's print and the process of filling the hole was explained and visualized with computer animations.

MAA Distinguished Lecture: Bart de Smit

Biography: Bart de Smit is a number theorist at Leiden University. He studied mathematics in Amsterdam and received his PhD from UC Berkeley in 1993. After various PostDoc positions, he continued his research in algebraic number theory in the Netherlands on a five year grant of the Royal Netherlands Academy of Arts and Sciences. He is currently running a four year research project of 12 research institutes on the interface of arithmetic geometry, number theory and applications to coding theory and cryptography.

Read more about Bart de Smit's lecture


Alice Silverberg, UC Irvine
Friday, December 8, 2010

Abstract: When you send your credit card number over the Internet, cryptography helps to ensure that no one can steal the number in transit. Julius Caesar and Mary Queen of Scots used cryptography to send secret messages, in the latter case with ill-fated results. More recently, cryptography is used in electronic voting, and it is also used to "sign" documents electronically. While cryptography has been used for thousands of years, public-key cryptography dates only from the 1970's. Some recent exciting breakthroughs in public-key cryptography include elliptic curve cryptography, pairing-based cryptography, and identity-based cryptography, all of which are based on the number theory of elliptic curves. This talk will give an elementary introduction to cryptography, including elliptic curve and pairing-based cryptography.

MAA Distinguished Lecture: Alice Silverberg

Biography: Alice Silverberg is a Professor of Mathematics and Computer Science at the University of California, Irvine. Her research interests include number theory and cryptography. She graduated summa cum laude in mathematics from Harvard University, and earned a Certificate of Advanced Study from Cambridge and a PhD and a Master's degree in mathematics from Princeton University. Gender equity issues are a long-standing concern of hers, as an outgrowth of her time spent studying at traditionally male institutions. She was awarded Humboldt, Bunting, Sloan, IBM, and NSF Fellowships, and has held a number of visiting or consulting positions in the US and abroad, including at IBM, Bell Labs, Xerox PARC, DoCoMo USA Labs, the Mathematical Sciences Research Institute in Berkeley, the University of Erlangen and the Max Planck Institute in Germany, the Institut des Hautes Études Scientifiques in France, and Macquarie University in Australia. Silverberg consulted for the TV show NUMB3RS, and occasionally writes mathematically-inspired Scottish country dances.

Read more about Alice Silverberg's lecture


Robert Bryant, Mathematical Sciences Research Institute
Thursday, October 14, 2010

Abstract: The notion of `holonomy' in mechanical systems has been around for over one hundred years and gives insight into daily operations as mundane as steering and parallel parking and in understanding the behavior of balls (or more general objects) rolling on a surface with friction. A sample question is this: What is the best way to roll a ball over a flat surface, without twisting or slipping, so that it arrives at at given point with a given orientation?

In geometry, holonomy has turned up in many surprising ways in the last 100 years and continues to be explored as a fundamental invariant of geometric structures.

In this talk, I will illustrate the fundamental ideas in the theory of holonomy using familiar physical objects and explain how it is also related to group theory and symmetries of basic geometric objects.

MAA Distinguished Lecture: Robert Bryant

​Biography: Robert Bryant is the Director of the Mathematical Sciences Research Institute of Berkeley, CA. A North Carolina native, he received his PhD in mathematics in 1979 at the University of North Carolina at Chapel Hill, working under Robert B. Gardner. After serving on the faculty at Rice University for seven years, he moved to Duke University in 1987, where he held the Juanita M. Kreps Chair in Mathematics until moving to the University of California at Berkeley in July 2007. He has held numerous visiting positions at universities and research institutes around the world. He visited MSRI during the 2001-02 academic year as a Clay Mathematics Visiting Professor and he was in residence at MSRI during the Fall 2003 term as a co-organizer of the program in Differential Geometry.

Read more about Robert Bryant's lecture


Pages