You are here

MAA Distinguished Lecture Series

The MAA sponsors a variety of public lectures, many of them held at the MAA Carriage House. Whether a Gathering 4 Gardner event or part of the NSA-funded Distinguished Lecture Series, the lectures feature some of the foremost experts within the field of mathematics, known for their ability to make current mathematical ideas accessible to non-specialists. The presentations provide a fabulous and fun learning opportunity for both professionals and students, as well as anyone interested in learning more about current trends in mathematics and the relationship between mathematics and broader scientific, engineering and technological endeavors.

Abstracts and speaker biographies will appear on this page as lectures are added to the events calendar.

Slidecasts and video clips of MAA public lectures are available here.

Join our mailing list for updates.


Dummy View - NOT TO BE DELETED

Tim Chartier, Davidson College
Tuesday, February 28, 2012

Abstract: Every year, people across the United States predict how the field of teams will play in the Division I NCAA Men’s Basketball Tournament by filling out a tournament bracket for the postseason play. This talk discusses two popular rating methods that are also used by the Bowl Championship Series, the organization that determines which college football teams are invited to which bowl games. The two methods are the Colley Method and the Massey Method, each of which computes a ranking by solving a system of linear equations. We also touch on how to adapt the methods to take late season momentum into account.

​Biography: Tim Chartier is an Associate Professor of mathematics at Davidson College. His ability to communicate math both in and beyond the classroom were recognized with the Henry L. Alder Award for Distinguished Teaching by a Beginning College or University Mathematics Faculty Member from the Mathematical Association of America.  His research and scholarship were recognized with an  Alfred P. Sloan Research Fellowship. Tim serves on the Editorial Board for Math Horizons, a mathematics magazine of the Mathematical Association of America. He also serves as chair of the Advisory Council for the Museum of Mathematics. Tim has been a resource for a variety of media inquiries which includes fielding mathematical questions for the Sports Science program on ESPN.

Read more about Tim Chartier's lecture


James A. Yorke, University of Maryland
Thursday, November 17, 2011

Abstract: Chaos is a real-world phenomenon that arises in many different contexts, making it difficult to tell exactly what chaos is. Yorke will give examples of the aspects of chaos.

Biography: James A. Yorke earned his bachelor's degree from Columbia University in 1963. He came to the University of Maryland for graduate studies, in part because of interdisciplinary opportunities offered by the faculty of the Institute for Physical Sciences and Technology (IPST). After receiving his doctoral degree in 1966 in Mathematics, Yorke stayed at the University as a member of IPST. Today he holds the title of Distinguished University Professor and also is a member of the Mathematics and Physics Departments.

Professor Yorke's current research projects range from chaos theory and weather prediction and genome research to the population dynamics of the HIV/AIDS epidemic. He is perhaps best known to the general public for coining the mathematical term "chaos" with T.Y. Li in a 1975 paper entitled "Period Three Implies Chaos," published in the American Mathematical Monthly. "Chaos" is a mathematical concept in nonlinear dynamics for systems that vary according to precise deterministic laws but appear to behave in a random fashion.

Read more about James Yorke's lecture


Ezra "Bud" Brown, Virginia Tech
Wednesday, September 21, 2011

Ezra Brown

Abstract: In the world of discrete mathematics, we encounter a bewildering variety of topics with no apparent connection between them. There are block designs in combinatorics, finite projective planes in geometry, round-robin tournaments and map colorings in graph theory, (0, 1)- matrices in linear algebra, quadratic residues in number theory, error-correcting codes on the internet, and the torus at the doughnut shop.

But appearances are deceptive, and this talk is about the (7,3,1) design, a single object with many names that connects all of these topics. Along the way, we'll learn how Leonhard Euler was once spectacularly wrong, how P. J. Heawood was almost completely right, and what happened when Richard Hamming got mad at a computer.

Read more about Bud Brown's lecture


Bart de Smit, Leiden University
Monday, April 4, 2011

Abstract: In a paper by de Smit and Hendrik Lenstra (Notices of the AMS, April 2003), it is shown that well known mathematical results about elliptic curves imply that what Escher was trying to achieve in this work has a unique mathematical solution. This discovery opened up the way to filling the void in the print. With help from artists and computer scientists, a completion of the picture was constructed at the Universiteit Leiden. The white hole turns out to contain the entire image on a smaller scale, which in the Dutch language is known as the Droste effect, after the Dutch chocolate maker Droste. In the talk, the mathematics behind Escher's print and the process of filling the hole was explained and visualized with computer animations.

MAA Distinguished Lecture: Bart de Smit

Biography: Bart de Smit is a number theorist at Leiden University. He studied mathematics in Amsterdam and received his PhD from UC Berkeley in 1993. After various PostDoc positions, he continued his research in algebraic number theory in the Netherlands on a five year grant of the Royal Netherlands Academy of Arts and Sciences. He is currently running a four year research project of 12 research institutes on the interface of arithmetic geometry, number theory and applications to coding theory and cryptography.

Read more about Bart de Smit's lecture


Alice Silverberg, UC Irvine
Friday, December 8, 2010

Abstract: When you send your credit card number over the Internet, cryptography helps to ensure that no one can steal the number in transit. Julius Caesar and Mary Queen of Scots used cryptography to send secret messages, in the latter case with ill-fated results. More recently, cryptography is used in electronic voting, and it is also used to "sign" documents electronically. While cryptography has been used for thousands of years, public-key cryptography dates only from the 1970's. Some recent exciting breakthroughs in public-key cryptography include elliptic curve cryptography, pairing-based cryptography, and identity-based cryptography, all of which are based on the number theory of elliptic curves. This talk will give an elementary introduction to cryptography, including elliptic curve and pairing-based cryptography.

MAA Distinguished Lecture: Alice Silverberg

Biography: Alice Silverberg is a Professor of Mathematics and Computer Science at the University of California, Irvine. Her research interests include number theory and cryptography. She graduated summa cum laude in mathematics from Harvard University, and earned a Certificate of Advanced Study from Cambridge and a PhD and a Master's degree in mathematics from Princeton University. Gender equity issues are a long-standing concern of hers, as an outgrowth of her time spent studying at traditionally male institutions. She was awarded Humboldt, Bunting, Sloan, IBM, and NSF Fellowships, and has held a number of visiting or consulting positions in the US and abroad, including at IBM, Bell Labs, Xerox PARC, DoCoMo USA Labs, the Mathematical Sciences Research Institute in Berkeley, the University of Erlangen and the Max Planck Institute in Germany, the Institut des Hautes Études Scientifiques in France, and Macquarie University in Australia. Silverberg consulted for the TV show NUMB3RS, and occasionally writes mathematically-inspired Scottish country dances.

Read more about Alice Silverberg's lecture


Pages