You are here

MAA Distinguished Lecture Series

The MAA sponsors a variety of public lectures, many of them held at the MAA Carriage House. Whether a Gathering 4 Gardner event or part of the NSA-funded Distinguished Lecture Series, the lectures feature some of the foremost experts within the field of mathematics, known for their ability to make current mathematical ideas accessible to non-specialists. The presentations provide a fabulous and fun learning opportunity for both professionals and students, as well as anyone interested in learning more about current trends in mathematics and the relationship between mathematics and broader scientific, engineering and technological endeavors.

Abstracts and speaker biographies will appear on this page as lectures are added to the events calendar.

Slidecasts and video clips of MAA public lectures are available here.

Join our mailing list for updates.


Dummy View - NOT TO BE DELETED

Ruth Charney, Brandeis University
Tuesday, October 14, 2008

Abstract: Children build models with 3-dimensional cubes. Mathematicians build them with higher dimensional cubes. Many physical systems can be represented by geometric models based on cubes. Using an example from robotics, we will investigate how such models are constructed and what can we learn from their strange, but beautiful geometry.

MAA Distinguished Lecture: Ruth Charney

Biography: Ruth Charney is Professor of Mathematics at Brandeis University. She received her undergraduate degree from Brandeis and her PhD from Princeton. She taught at Berkeley, Yale, and Ohio State University before returning to her alma mater in 2003. She currently serves as Chair of her department and as a Vice President of the American Mathematical Society. She was never sure whether she was a topologist or an algebraist, and is now happily immersed in geometric group theory, a combination of the two.

Read more about Ruth Charney's lecture


George Gheverghese Joseph, University of Manchester

Mathematicians in Kerala, southern India, discovered infinite series well before their counterparts in Europe did, George Gheverghese Joseph of the University of Manchester has argued. This knowledge may even have traveled from India to Europe via Jesuit scholars, influencing European mathematics.

On Sept. 23, at the MAA's Carriage House Conference Center, Joseph spoke about "The Politics of Writing Histories of Non-Western Mathematics." In a provocative address, he cited the example of the discovery of infinite series as one instance in which possible Indian and other Asian influences on European mathematics have been neglected in the past.

Keep reading...


Martin Golubitsky, Ohio State University

Abstract: Regular patterns appear all around us: from vast geological formations to the ripples in a vibrating coffee cup, from the gaits of trotting horses to tongues of flames, and even in visual hallucinations. The mathematical notion of symmetry is a key to understanding how and why these patterns form. In this lecture Professor Golubitsky will show some of these fascinating patterns and explain how mathematical symmetry enters the picture. 

MAA Distinguished Lecture: Martin Golubitsky

Biography: Martin Golubitsky is Distinguished Professor of Mathematics and Physical Sciences at the Ohio State University, where, beginning in September, he will serve as Director of the Mathematical Biosciences Institute. He received his PhD in Mathematics from M.I.T. in 1970 and has been Professor of Mathematics at Arizona State University and Cullen Distinguished Professor of Mathematics at the University of Houston.

Dr. Golubitsky works in the fields of nonlinear dynamics and bifurcation theory studying the role of symmetry in the formation of patterns in physical systems and the role of network architecture in the dynamics of coupled systems. His recent research focuses on some mathematical aspects of biological applications: animal gaits, the visual cortex, the auditory system, and coupled systems. He has co-authored four graduate texts, one undergraduate text, two nontechnical trade books, (Fearful Symmetry: Is God a Geometer with Ian Stewart and Symmetry in Chaos with Michael Field) and over 100 research papers.

Dr. Golubitsky is a Fellow of the American Academy of Arts and Sciences, a Fellow of the American Association for the Advancement of Science, and a past President of the Society for Industrial and Applied Mathematics.

Read more about Martin Golubitsky's lecture


Keith Devlin, Stanford University

MAA Distinguished Lecture: Keith Devlin

Abstract: At four distinct stages in the development of modern society, mathematics (in particular, acquisition of the ability to carry out new kinds of computation) changed in a fundamental, dramatic, and revolutionary way how we humans understand the world and live our lives.

The fourth such change is taking place during our lifetime, brought about by the invention of machines that can be instructed to compute for us. The others occurred in 8,000 B.C., the 13th century, and the 17th century. I'll look at how human life and cognition changed at each of those three stages.

Read more about Keith Devlin's lecture


Karl Rubin, UC Irvine

Abstract: Which natural numbers occur as the area of a right triangle with three rational sides?  This is a very old question and is still unsolved, although partial answers are known (for example, five is the smallest such natural number).  In this talk we will discuss this problem and recent progress that has come about through its connections with other important open questions in number theory.

MAA Distinguished Lecture: Karl Rubin

Biography: Karl Rubin is the Thorp Professor of Mathematics at the University of California, Irvine.  His research deals with elliptic curves and other aspects of number theory.  Rubin attended Washington DC public schools, was a Putnam Fellow as an undergraduate at Princeton, and received his Ph.D. from Harvard.  He was a professor at Ohio State, Columbia, and Stanford before moving to UC Irvine in 2004.  Rubin received the Cole Prize in Number Theory from the American Mathematical Society, a National Science Foundation Presidential Young Investigator award, a Humboldt Research Award, and Guggenheim and Sloan fellowships.

Read more about Karl Rubin's lecture


Pages