You are here

Contributed Paper Sessions

Contributed Paper Sessions Call for Papers

The Mathematical Association of America will hold its ninety-second summer meeting from Wednesday evening, August 6, through Saturday, August 9, 2014, at the Portland Hilton Hotel, 921 SW Sixth Ave., Portland, Oregon. Information regarding the program will appear in the April/May issue of MAA FOCUS and online at The purpose of this preliminary announcement is to alert participants to the themes of paper sessions. 

The themes of the paper sessions are described below. MAA MathFest participants are invited to submit abstracts of papers consistent with those themes. Presentations in the themed sessions are normally 15 minutes in length. The general sessions will accept abstracts of papers in all areas of collegiate mathematics, mathematical pedagogy, and the undergraduate mathematics curriculum. Presentations in the general sessions are limited to 10 minutes each.

Each participant may make at most one presentation per session (including at most one presentation in the general session). If your paper cannot be accommodated in the session for which it was submitted, it will automatically be considered for the general contributed paper sessions.

Each session room will be equipped with a computer projector and a screen.  Speakers are encouraged to make use of the computer projector but must provide their own laptop computer or have access to one. 

Submit an Abstract

The deadline for submission of abstracts is April 30, 2014. Early submissions are encouraged. Please note that the scheduling of the sessions remains tentative and could change.

Contributed Paper Sessions

1. Recreational Mathematics: New Problems and New Solutions

Thursday, August 7, afternoon

As with all mathematics, recreational mathematics continues to expand through the solution of new problems and the development of novel solutions to old problems. For the purposes of this session, the definition of recreational mathematics will be a broad one. The primary guideline used to determine the suitability of a paper will be the understandability of the mathematics. Papers submitted to this session should be accessible to undergraduate students.  Novel applications as well as new approaches to old problems are welcome.  Examples of use of the material in the undergraduate classroom are encouraged.

Paul Coe, Dominican University
Sara Quinn, Dominican University
Kristen Schemmerhorn, Dominican University

2. Undergraduate Research Activities in Mathematical and Computational Biology

Friday, August 8, morning

This session is dedicated to aspects of undergraduate research in mathematical and computational biology.  First and foremost, this session would like to highlight research results of projects that either were conducted by undergraduates or were collaborations between undergraduates and their faculty mentors.  Of particular interest are those collaborations that involve students and faculty from both mathematics and biology.  Secondly, as many institutions have started undergraduate research programs in this area, frequently with the help of initial external funding, the session is interested in the process and logistics of starting a program and maintaining a program even after the initial funding expires.  Important issues include faculty development and interdisciplinary collaboration, student preparation and selection, the structure of research programs, the acquisition of resources to support the program, and the subsequent achievements of students who participate in undergraduate research in mathematical and computational biology.

Timothy Comar, Benedictine University
Sponsored by SIGMAA on Mathematical and Computational Biology (BIO SIGMAA)

3. Curriculum Development to Support First Year Mathematics Students

Saturday, August 9, afternoon

A common focus of university administration is student retention and graduation.  First year mathematics courses, both general education and major specific, have comparatively high drop/fail/withdraw rates.  This means that they are often scrutinized in regard to their effect on retention and graduation rates.  In this session, we would like to hear what you have been doing to respond to this scrutiny.  We hope to focus on departmental-wide efforts, rather than specific classroom approaches.  Presentations could include complete course redesign, co-requisite support courses, restructure of curriculum, departmental efforts to standardize, etc.  Note that we would like to hear about successful, in process, and unsuccessful initatives. Presentations that include a description of the initiative along with data supporting the success or failure of these initiatives are especially encouraged. 

Donna Flint, South Dakota State University
Rebecca Diischer, South Dakota State University
Charles Bingen, University of Wisconsin, Eau Claire

4. Flipping Pedagogy in College Mathematics Courses

Thursday, August 7, afternoon

While the expression “flipping a course” is relatively new, this pedagogical strategy has been around for a number of years. Some tenets that underlie this type of pedagogy are that: (1) out-of-class time should be highly structured to best prepare students for in-class activities; (2) it is useful to evaluate students’ pre-class preparation and for instructors to have access to this information; (3) class time is better spent having students engage in cooperative problem solving and discussions rather than listening and taking notes; and, (4) students benefit from more frequent structured practice and feedback in the classroom from a knowledgeable teacher. In this session participants will present and discuss examples of flipped mathematics courses and share the benefits and challenges of this type of pedagogy. Descriptions of unique models of flipped classes are welcome as are results of research on flipping pedagogy.

Jean McGivney-BurelleUniversity of Hartford
Larissa SchroederUniversity of Hartford
John WilliamsUniversity of Hartford
Fei XueUniversity of Hartford
Mako HarutaUniversity of Hartford
Ben Pollina, University of Hartford

5. Open and Accessible Problems in Real or Complex Analysis

Friday, August 8, afternoon

Description:  Undergraduate research is more popular than ever, and there is a high demand for open and accessible problems for students to tackle.  Analysis is an area particularly suited for this research because it builds off of the foundational material that students learn in calculus. In addition, analysis is rich with problems that are easily stated, but more difficult to solve, and often lead to further questions for investigation. We invite presentations about open problems in real or complex analysis suitable for undergraduate research or joint faculty and undergraduate research.  Presentations concerning results about these types of problems, preferably with open questions remaining, are also welcome.

Lynette BoosProvidence College
Su-Jeong Kang, Providence College

6. Mathematics in Honors Programs

Thursday, August 7, afternoon

Honors Colleges and Programs look for unique opportunities to reach out to bright and capable students who may not be mathematics majors. This session will focus on courses, strategies, or activities, that have been used for non major mathematics classes designed for honors students.  Speakers should provide evidence of the success of and/or challenges involved with the courses they have taught.

Jacci White, Saint Leo University

7. More Favorite Geometry Proofs

Saturday, August 9, afternoon

This session invites presenters to share their favorite undergraduate geometry proofs. These proofs should be suitable for Euclidean and non-Euclidean geometry courses as well as for courses frequently referred to as "modern" or "higher" geometry but not those related to differential geometry or (low-level) graduate courses. Proofs must be for theorems other than the Pythagorean Theorem and should be different from those presented during the MAA MathFest 2013 paper session (see for more information). Presenters must do the full proof, discuss how the proof fits into the course, provide information regarding prerequisite topics for the proof, and discuss associated areas with which students have difficulty and how such concerns are addressed so that students understand the proof. Presenters are invited to discuss how they have modified the proof over time as well as to share historical information for "classic" proofs and explorations/demonstrations that they use to help students understand the associated theorem.  Abstracts should include the theorem to be proved/discussed as well as brief background information.

Sarah Mabrouk, Framingham State University

8. Project-Based Curriculum

Friday, August 8, afternoon

One of the goals of mathematics teaching is enabling the learner to apply their mathematical knowledge to other disciplines and to real-world problems. One method to achieve this goal is project-based learning, which involves students attempting to solve interdisciplinary problems arising outside of the traditional classroom. The problems may arise from general social concerns or from within business, non-profit, or government organizations. Project-based learning can encourage inquiry, problem solving, collaboration, reasoning, and communication skills. We invite papers that address how project-based learning is facilitated at any level and the content of such projects. Evidence should be included as to the effectiveness of such projects and/or the system by which students engage in such projects.

Emek Kose, St. Mary's College of Maryland
Casey Douglas, St. Mary's College of Maryland
Angela Gallegos, Loyola Marymount University

9. Undergraduate Research in Mathematics: How, When, Why

Friday, August 8, afternoon

Opportunities for undergraduate research have increased dramatically in recent years. There are many benefits of  doing and guiding undergraduate research. We invite talks on a range of topics including, but not limited to: involving students in mathematics research, reports on successful programs, how to set up programs, and research results. We are especially interested in presentations from mentors and program directors about how programs are run and evidence of their effectiveness. We also welcome presentations from students focused on their experience and learning outcomes (talks about their research results should be submitted to other sessions). This session seeks to expand the network of undergraduate researchers and facilitators, exchange new ideas, and help make undergraduate research more accessible.

Emek KoseSt. Mary's College of Maryland
Casey DouglasSt. Mary's College of Maryland
Angela GallegosLoyola Marymount University

10. Embodied Activities in the Teaching and Learning of Mathematics

Thursday, August 7, afternoon

In layman’s terms we might describe embodied activities as events that connect cognition with action. In other words, these are tasks, where a student is physically and mentally engaged in a cognitive task designed to result in learning. These tasks are created so that students are the mathematics. Many hypothesize that manipulatives “work” because they provide an atmosphere where students are engaged in actions that assist in constructing mathematical concepts. Similarly, incorporating embodied activities into the classroom has proved fruitful not only with prospective teachers but with undergraduate mathematics majors who are learning related rates, geometric concepts, and proof constructions.  Furthermore, they can serve as an entry point to inquiry-based learning because embodied activities go beyond communicating, writing, reading, and reflecting.

The purpose of this session is to share activities that require students to be physically engaged in learning all levels of mathematics, particularly undergraduate mathematics. Submitted abstracts should include the goals of the activity, description of the activity with details connecting the mathematics with the actions, and strengths and weaknesses of the activity. We encourage presentations that are audience-interactive, so that they may experience the activity in action. Talks that focus on general active learning strategies with little or no connections between cognition and physical action should submit talk proposals to the Active Learning in Mathematics contributed session.

Hortensia Soto-Johnson, University of Northern Colorado
Sponsored by MAA Committee on Professional Development

11. Active Learning in Mathematics

Friday, August 8, afternoon

Active learning is the process where students engage in activities such as reading, writing, or problem solving that encourage analysis, synthesis, and evaluation of class content. It has been well-known that active learning strategies increase student learning and have long- lasting effects on student success (Braxton, et al, 2008). For this session, we invite instructors of mathematics to discuss ways to promote this hands-on learning in the classroom. In particular, techniques that involve short reading, writing, or problem-solving prompts and exercises that are designed to reinforce classroom material are encouraged. Both examples of individual student active learning strategies and successful uses of group- related strategies (such as “think, pair, share” ideas) are welcome. The session is designed for instructors to share their experiences and provide useful tips and tricks on implementing these strategies and overcoming obstacles to active learning in general. Examples and ideas can come from any type of course, from undergraduate non-major service courses and early- major mathematics courses to late-major and even graduate-level classes. Speakers are encouraged to include assessment data on the effectiveness of their active learning strategies or empirical feedback from students and/or faculty about their strategies. Talks that focus on embodied activities that connect cognition with physical action in the classroom should submit talk proposals to the Embodied Activities in the Teaching and Learning of Mathematics session.

David Taylor, Roanoke College
Robert Allen, University of Wisconsin, La Crosse
Lorena Bociu, North Carolina State University

General Contributed Paper Sessions

Thursday, August 7, Friday, August 8, and Saturday, August 9, morning and afternoon

The general sessions accept abstracts of papers in all areas of mathematics, pedagogy, and the undergraduate mathematics curriculum.  When you submit your abstract you will be asked to place it in one of the below categories.

Susan Callahan, Cottey College
Lynette Boos, Providence College


History or Philosophy of Mathematics

Interdisciplinary Topics in Mathematics

Mathematics and Technology


Modeling or Applications


Probability or Statistics

Research in Algebra

Research in Analysis

Research in Applied Mathematics

Research in Geometry

Research in Graph Theory

Research in Linear Algebra

Research in Logic or Foundations

Research in Number Theory

Research in Topology

Teaching or Learning Advanced Mathematics

Teaching or Learning Calculus

Teaching or Learning Developmental Mathematics

Teaching or Learning Introductory Mathematics

Other than the above

MAA Student Paper Sessions

The deadline for receipt of abstracts for student papers is Friday, June 6, 2014.  Students may not apply for funding from both MAA and Pi Mu Epsilon. Every student paper session room will be equipped with a computer projector and a screen.  Presenters must provide their own laptops or have access to one.  Each student talk is fifteen minutes in length.

Students who wish to present at the MAA Student Paper Sessions at MAA MathFest 2014 in Portland must be sponsored by a faculty advisor familiar with the work to be presented.  Some funding to cover costs (up to $750) for student presenters is available.  At most one student from each institution or REU can receive full funding; additional such students may be funded at a lower rate. All presenters are expected to take full part in the meeting and attend indicated activities sponsored for students on all three days of the conference. Abstracts and student travel grant applications should be submitted at For additional information visit

Theron J. Hitchman, University of Northern Iowa
Jennifer Bergner, Salisbury University

Pi Mu Epsilon Student Paper Sessions

The deadline for receipt of abstracts for PME student papers is Friday, June 6, 2014. Every student paper session room will be equipped with a computer projector and a screen. Presenters must provide their own laptops or have access to one. Each student talk is fifteen minutes in length. 

Students who wish to present in the Pi Mu Epsilon Student Paper Sessions at MAA MathFest 2014 must consult with their PME Chapter Advisor before submitting a paper or applying for funding. Students may not apply for funding from both PME and MAA. All PME speakers must be members of the chapter at their home institution, which is the chapter that must nominate them to speak in the PME Student Sessions. Joint presentations are not allowed in the PME Student Sessions.

Each chapter may nominate up to 5 student speakers for transportation support of up to $600 per student with a $1200 per Chapter maximum. Transportation expenses include airfare, airport parking, ground transportation, and driving mileage. In addition to travel expenses, Pi Mu Epsilon awards sustenance grants to help pay for students’ food and housing. These grants are funded by a generous grant from the National Security Agency and vary in value each year depending on the number of students needing funding.

All PME students are expected to take full part in the meeting and attend all activities sponsored for students at MAA Mathfest. These events include the Opening Student Reception, the PME Student Paper Sessions, the MAA Lecture for Students, the PME Banquet, and the J. Sutherland Frame Lecture. For additional information visit

Angela Spalsbury, Youngstown State University