 Membership
 Publications
 Meetings
 Competitions
 Community
 Programs
 Students
 High School Teachers
 Faculty and Departments
 Underrepresented Groups
 MAA Awards
 MAA Grants
 News
 About MAA
Illustrative Resources 



C: Students majoring in the mathematical sciences The recommendations in this section refer to all major programs in the mathematical sciences, including programs in mathematics, applied mathematics, and various tracks within the mathematical sciences such as statistics or operations research. Also included are programs designed for prospective mathematics teachers, whether they are ’mathematicsâ? or ’mathematics educationâ? programs. These recommendations also provide a basis for discussion with colleagues in other departments about possible joint majors with applied science, economics or life sciences. The case studies project that resulted in Models
that Work (Tucker, 1995) included site visits to ten mathematics departments
with undergraduate programs that are considered effective in one or more of
the following categories:
A book on the Potsdam program is Mathematics Education at Its Best: The Potsdam Model by D. K. Datta, Kingston, RI: Rhode Island Desktop Enterprises, 1993. Articles about the program are ’The Basis for the Success of the Potsdam Programâ? by Rick Luttmann, ’On Attracting and Retaining Mathematics Majors ’ Don’t Cancel the Human Factorâ? by Armond Spencer, Notices of the AMS 1995, ’A Humanistic Academic Environment for Learning Undergraduate Mathematicsâ? by Clarence Stephens, who founded the program, ’Thoughts on power and pedagogyâ? by P. Rogers (which appeared in Leone Burton, Ed., Gender and Mathematics: An International Perspective (pp. 3845), London: Cassell, 1992), and ’A modern fairy tale?â? by J. Poland, Amer. Math. Monthly, 94(3), 291’295, 1987. Additional publications about the SUNY Potsdam experience are available through a link on the mathematics department website. Descriptions of Some Programs at Schools with a Large Number of Mathematics Majors Montclair State University (public coeducational; 11,000 undergraduates). The Department of Mathematical Sciences offers programs leading to the bachelor’s degrees in mathematics, mathematics with a concentration in applied mathematics, mathematics with certification as a teacher of mathematics, physics, and physics with certification as a teacher of physics. The department also offers minors in mathematics and in physics and honors programs in mathematics and physics for qualified students. The applied mathematics concentration has two tracks: (1) statistics and (2) discrete applied mathematics and operations research. The programs introduce central ideas in a variety of areas in mathematics and physics, and are intended to develop problemsolving ability by teaching students to combine critical thinking with rigorous reasoning. All majors require single and multivariable calculus, linear algebra and probability. The mathematics major adds to that core advanced calculus, algebra, and electives; courses in introductory physics and computer science are required as well. The applied mathematics major adds to the core modeling, algebra, two computer science courses, and either discrete mathematics and operations research or statistics. The mathematics education major adds geometry and algebra and also requires physics and computer science. The probability course includes discrete and continuous. There is also an advanced course in combinatorics and graph theory. Spelman College (Private, independent, liberal arts, historically black college for women; 2,000 undergraduates). At Spelman the ’primary goalâ? of the mathematics major is ’to teach students to think logically and critically.â? Both the B.A. and the B.S. versions of the major require single and multivariable calculus, linear algebra plus applications, a bridge course, algebra, real analysis, a second semester of either algebra or analysis, 3 advanced electives, and a senior seminar. The B.S. requires 8 more credits of advanced electives. Discrete mathematics is offered with a calculus and computing prerequisite. There is no requirement of discrete mathematics, probability, or statistics. Through choices of electives, students can emphasize operations research, computation, statistics, actuarial science, business administration or preparation for teaching. With Bryn Mawr, Spelman runs the EDGE Program (Enhancing Diversity in Graduate Education) for graduating seniors or students entering graduate school. State University of New York (SUNY)  Fredonia (Public, 4900 undergraduates). The department offers several undergraduate program options in mathematics: liberal arts mathematics, applied mathematics: economics option, applied mathematics: statistics/operations research, mathematics: adolescent education, mathematics: middle childhood education, and an honors program. All options require calculus and linear algebra and one laboratory science course. The liberal arts option requires programming, discrete mathematics, differential equations, analysis, algebra, probability and statistics, a senior seminar and two electives. The applied mathematics: economics option omits the algebra and analysis courses and adds mathematical modeling, financial mathematics, a mathematics or statistics elective, and 7 economics electives. The applied mathematics: statistics/operations research option omits financial mathematics and adds one more statistics course, 2 more mathematics or statistics courses, and a minor in a field that uses statistics or operations research. The mathematics: adolescent education option is similar to the liberal arts option, except that it does not include differential equations and adds geometry, history of mathematics and a mathematics reading and writing course. See B.4 for information about the mathematics: middle childhood education option. State University of New York (SUNY)  Stony Brook (Public, research university; 14,200 undergraduates). SUNYStony Brook offers majors in mathematics and in applied mathematics and statistics, with the applied mathematics and statistics major offering tracks in actuarial science or applied environmental sciences. Two distinct departments in two separate colleges support these programs, the Department of Mathematics in the College of Arts and Sciences and the Department of Applied Mathematics and Statistics in the College of Engineering and Applied Sciences. The major program in mathematics is broadly based, and contains courses that feature the history of mathematics and the use of computers in mathematics as well as the standard undergraduate courses in analysis, geometry and algebra and a set of highlevel seminars for advanced students. It is very flexible and may be combined with other majors, such as physics, economics, biochemistry, computer science or applied mathematics. Double major and major/minor combinations are designed to give a solid background for a student who is interested in graduate school either in another discipline or in mathematics itself. Stony Brook also offers a program, open to both mathematics and applied mathematics and statistics majors, which prepares future teachers of high school mathematics. Students graduate from the program with provisional certification to teach mathematics, grades 712, in New York State. The applied mathematics and statistics (AMS) department encourages its students to have a broad exposure to many types of mathematical reasoning and to its diverse roles in the social and natural sciences. The department was cited in Towards Excellence as having a popular major oriented toward the ’decision sciencesâ? side of applied mathematics. Almost all electives in this program are in probability and statistics or operations research. During their first two years, students considering an AMS major are encouraged to take a required calculus sequence, two semesters of physics, an appropriatelevel computer science or computer science for engineers course; one other computer course (because competence in computer programming is deemed essential for many professional careers), and some economics. At the end of the sophomore year or the beginning of the junior year, students begin taking upper division AMS courses, usually starting with finite mathematical structures or probability and statistics. At the same time, they are strongly encouraged to continue taking pure mathematics and computer science courses and mathematically oriented courses in other departments. University of California at Los Angeles (Urban public research university; 25,300 undergraduates). The department at UCLA offers many kinds of majors: mathematics (recommended for students planning graduate school), applied mathematics, mathematics of computation, and ’generalâ? (recommended for prospective high school teachers). It also offers joint majors as described in Part 2, Section C.5. The mathematics major requires ’preparationâ? consisting of single and multivariable calculus, series and differential equations, an introduction to linear algebra, and an introduction to programming. The upperdivision requirements are linear algebra, algebra (2 quarters), analysis (2 quarters), complex analysis, differential geometry, and electives. The applied mathematics major has the same preparation, followed by linear algebra, analysis (two quarters), modeling, and two courses chosen from numerical methods, probability/statistics, differential equations, and electives. Prospective teachers are required to take algebra, geometry, probability or statistics, applied mathematics, with recommended electives in the history of mathematics, number theory, and statistics. Both analysis and algebra are available with an applied emphasis. University of Chicago (Private, coeducational; 3500 fulltime undergraduates). The University of Chicago mathematics department was cited in Towards Excellence and Models that Work as being clearly committed to excellence in undergraduate mathematics education. The department offers five bachelor’s degree programs leading to a B.A. or B.S. in mathematics, B.S. in applied mathematics, B.S. mathematics with specialization in computer science, and B.S. mathematics with specialization in economics. The department requires all majors to complete both a yearlong sequence in calculus (or to demonstrate equivalent competence on the calculus placement test), yearlong (threequarter) sequence in analysis, and two quarters of a sequence in algebra. Candidates for the B.S. degree in mathematics must take a threequarter sequence in algebra. The remaining mathematics courses needed in the mathematics concentration programs (three for the B.A., two for the B.S.) are selected from an extensive list of over 35 courses. Mathematics B.S. candidates are further required to select a minor field, which consists of an additional threecourse sequence, outside the mathematics department but within the division of physical sciences. Candidates for the B.S. in applied mathematics all take prescribed courses in numerical analysis, algebra, complex variables, ordinary differential equations, and partial differential equations. In addition, candidates are required to select a minor field, which consists of a threecourse sequence that is outside the mathematics department but within the division of physical sciences. The programs of ’with specialization inâ? are versions of the B.S. in mathematics and have specific mathematics and disciplinary requirements. (See the descriptions in Part 2. Section C.5.) University of Michigan (Public research university; 24,500 undergraduates). The department offers several majors: ’pure mathematics,â? ’mathematical sciences,â? actuarial mathematics, and a version of the major for teaching certification. All majors require a core consisting of calculus, linear algebra, and differential equations. The pure mathematics major requires an additional 9 courses: 4 basic, 4 elective and 1 cognate. The 4 basic courses consist of 1 each from the following groups: differential equations, algebra, analysis, geometry/topology. There is great freedom on the choice of electives, but the choice must be ’coherentâ?. The cognate course can be anything involving significant use of mathematics at the intermediate level or higher. There is no discrete or probability/statistics requirement for the pure mathematics major. The mathematical sciences major also requires an additional 9 courses: 4 basic courses chosen from differential equations, discrete mathematics and algebra, analysis and probability, and 5 electives chosen to fit one of 9 options: discrete and algorithmic methods, numerical and applied analysis, operations research and modeling, probabilistic methods, mathematical economics, control systems, or finance and risk management. Prospective teachers take the core plus 1 course from each of discrete mathematics/modern algebra, geometry, probability, and secondary mathematics and one additional mathematics course. They must also demonstrate competence with a computer programming language or highlevel mathematics software and take a series of education courses. University of Rochester (Private, coeducational, nonsectarian; 4440 full time undergraduates). The department offers programs in mathematics, mathematics/statistics, applied mathematics, and mathematics education (for prospective high school teachers). Each major has a ’preparation,â? 3 core course sequence, and 5 advanced electives. The preparation typically includes single and multivariable calculus and a course combining linear algebra and differential equations. The core for mathematics majors requires linear algebra, algebra or topology, and one of a long and diverse list of options. The electives must include 3 upperlevel mathematics courses plus two more that can either be mathematics courses or courses in other departments with significant mathematical content. The core for applied mathematics is linear algebra, probability, real and complex analysis. Mathematics education majors take a core of probability, linear algebra and algebra. All majors must satisfy an upperlevel writing requirement by taking two ’W’ mathematics courses or by taking one ’W’ course plus a 2 credit ’W’ supplement to another mathematics course. The University of Rochester, which has over 5% of students majoring in mathematics, was the focus of the article ’College math on the rebound?â? by Mark Clayton, Christian Science Monitor, August 13, 2002). Vanderbilt University (Independent, private, coeducational; 6200 undergraduates). The Department of Mathematics offers an undergraduate major with several types of emphasis. Students planning to continue in graduate study may choose to emphasize pure mathematics. Students with other interests emphasize applied mathematics, statistics, or preparation for teaching. A solid background in mathematics is advertised as providing an excellent foundation for several professions’many students go on to professional studies in law, medicine, or business. The department offers two kinds of concentration. Program I is intended for most mathematics majors in the College of Arts and Science and requires a minimum of 32 semester hours in the department. Program II is intended for students in the School of Engineering who elect a second major in mathematics, but it is also available for other students. Program II requires a minimum of 29 semester hours in the department in addition to 6 semester hours outside the department. Both programs require a calculus sequence, linear algebra, differential equations, and 4, from a list of 20, mathematics courses. Students have choices for the remaining requirements. Vanderbilt attracts a significant number of engineers who double major in engineering and mathematics. Counting double majors, Vanderbilt claims to have the highest percentage of its bachelor’s degrees awarded to mathematics majors of any U.S. doctoral university. Williams College (Private, coeducational, liberal arts; 2000 full time undergraduates). In 2000, 8% of Williams College graduates were mathematics majors. The department (which includes both mathematics and statistics) offers a single, flexible major with the goal of developing ’problem solving ability by teaching students to combine creative thinking with rigorous reasoning.â? It requires single and multivariable calculus; one course chosen from applied mathematics, discrete mathematics or statistics; 3 core courses: linear algebra, real analysis or applied real analysis, algebra; 3 advanced courses, one of which must be numbered at the 400 level and taken in the senior year; and participation in the weekly colloquium in which senior majors present talks on subjects of their choosing. Although there are no formal tracks, the department offers suggestions for different interests. For example, students interested in applied mathematics and the physical sciences are advised to take differential equations and vector calculus, discrete mathematics, applied real analysis, and groups and characters. The discrete mathematics is offered with a calculus prerequisite. York
College, City University of New York (CUNY) (Public, urban, 3600
undergraduates). The major
in mathematics at York College is very flexible. It requires single
and multivariable calculus, differential equations, linear algebra, modern
algebra, a onecredit Seminar in Contemporary Mathematics, a mathematics
elective, and 3 courses in an area of specialty. In consultation with
advisors, students can tailor their programs for particular career paths,
including actuarial science. Courses designed for mathematical sciences majors should ensure that students:
Research on Reasoning and Proof
In ’Secondary School Mathematics Teachers' Conceptions of
Proofâ? (Journal for Research in Mathematics Education,
33 (5), 379405, 2002, available through ProQuest),
Eric J. Knuth concluded that although teachers recognize a variety of
roles of proof, they lack the view that proof is an important tool for
learning mathematics, hold limited views regarding the nature of proof, and
demonstrate inadequate understandings of what constitutes proof. Knuth called
for changes in undergraduate mathematics courses, as well as further research
on required levels of understanding of proof and mathematical reasoning for
secondary school teachers. Knuth concluded that ’the responsibility for
enhancing teachers' conceptions of proof lies with both mathematicians and
mathematics educators, the parties who are chiefly responsible for the nature
of teachers' experiences with proof.â? In ’Making the transition to formal proofâ? (Educational
Studies in Mathematics 27: 249266, 1994, available through JSTOR),
Robert Moore found that students in a transitiontohighermathematics course
’did not know how to use definitions to obtain the overall structure of
proofs,â? ’were unable to understand and use mathematical language and
notation,â? and ’did not know how to begin proofs.â? He noted that
’several students in the transition course had previously taken upperlevel
courses requiring proofs. All of them said they had relied on
memorizing proofs because they had not understood what a proof is nor how to
write one.â? Analysis of data collected from a previous group theory
course indicated that ’the students appeared to be overwhelmed by the
necessity of grappling with difficult group theory concepts, problem solving,
abstraction, and generalization while learning what a proof is and how to
write one. A transition course on mathematical language and proof would
have reduced their cognitive load in subsequent upperlevel courses while
also preparing them for the formal mathematical approach used in those
courses.â? Annie and John Selden also studied students in a
transitiontohighermathematics course and found that even thirdor
fourthyear university students specializing in mathematics or secondary
mathematics education had great difficulty translating informal mathematical
statements into the formal versions that would help them determine the truth
or falsity of the statements. In ’Unpacking the logic of mathematical
statementsâ? (Educational Studies in Mathematics, 29; 123151, 1995,
available through JSTOR) the Seldens define ’the term validation to describe
the process an individual carries out to determine whether a proof is correct
and actually proves the particular theorem it claims to prove.â? They
state that ’[t]his process involves much more than just passive reading ’ it
is often quite complicated and includes making affirming assertions, asking
and answering numerous questions of oneself, and perhaps even constructing
subproofs.â? To help students learn to validate a proof, they suggest
presenting ’theorems and definitions both in a more informal way and in a
more formal wayâ? in order to ’accommodate the needs both for intuitive
understanding and for the careful validation of proofs or even validation of
less formal arguments.â? They also suggest that ’it might be useful to
offer university students some explicit instruction or advice on validation,
an area currently more or less neglected.â? Another study by the Seldens addressed ’The Role of Example in
Learning Mathematics.â? They wrote, ’Examining examples and nonexamples
can help students understand definitions. ... When we teach linear algebra
and introduce the concept of subspace, we often provide examples and
nonexamples for students. We may point out that the polynomials of degree
less than or equal to two form a subspace of the space of all polynomials,
whereas the polynomials of degree two do not. Is the provision of such
examples always desirable? Would it perhaps be better to ask undergraduate
students to provide their own examples and nonexamples? Would they be able
to? Given a false conjecture, would students be able to come up with
counterexamples?â? The ’samplerâ? includes several studies aiming to shed light
on these questions: ’Successful Math Majors Generate Their Own Examples,â?
’Being Asked for Examples Can Be Disconcerting,â? ’Generating Counterexamples
That Are Explanatory, Coda,â? and "If I Don't Know What It Says, How Can
I Find an Example of It?" The Seldens also explored the way in which mathematics majors read and reflect on studentgenerated arguments purported to be proofs of a single theorem. They found that undergraduates tend to focus on surface features of arguments, and that these students have little ability to determine whether a particular argument constitutes a proof. The article ’Validation of Proofs Considered as Texts: Can Undergraduates Tell Whether an Argument Proves a Theoremâ? (Selden, A. & J. Selden, Journal for Research in Mathematics Education, 34 (1), 436. Reston, VA: National Council of Teachers of Mathematics, 2003, available through ProQuest) includes details of the study, ’relates the mathematics research community’s views of proofs and their validations to ideas from reading comprehension and literary theory,â? and points to implications for teaching. In ’The Role of Logic in Teaching Proofâ? (American Mathematical Monthly (110)10, 886899) Susanna S. Epp proposes two hypotheses to explain some of the reasons why so many students have difficulty with proof and disproof: differences between mathematical language and the language of everyday discourse, and the kinds of shortcuts and simplifications that have been part of students' previous mathematical instruction. The article describes research about whether instruction can help students develop formal reasoning skills and suggests that such instruction can be successful when done with appropriate parallel development of transfer skills. To prepare ’Group Dynamics in Learning to Prove Theorems,â? Connie Campbell, Georgia S. Miller, and G. Joseph Wimbish silently videotaped students working in groups on set problems and found that ’[m]any groups took far longer to formulate a proof than we expected. We looked on, unable to comment or give help, as groups struggled with a proof, pursued several incorrect paths, but were finally successful. This prompted the authors to wonder how often we preempt our students from making self discoveries. In several cases we were convinced that a group was destined for failure, but were proven wrong as they finally came around to a valid argument. Had the environment been different, and we been able to interact with the students, we most certainly would have offered input, potentially sending the incorrect message to these students that they could not have developed a correct solution independently.â? In ’Students’ Proof Schemes: Results from Exploratory Studies,â? Guershon Harel and Larry Sowder addressed questions revolving around the development of college students’ proof understanding, production, and appreciation (PUPA) (Harel and Sowder, 1998). In this first of a series of planned reports, these researchers focused on various students’ schemes of mathematical proof. They have developed three categories of proof schemes ’ each with several subcategories: External Conviction Proof Schemes, Empirical Proof Schemes, and Analytical Proof Schemes. None of the schemes are mutually exclusive and students can operate within several schemes simultaneously. Research continues to examine and refine these schemes, as well as to document students’ progress in developing a conception of proof, offer developmental models of the concept of proof based on educational research, and offer principles for instructional treatments that will facilitate proof understanding, production, and appreciation. Additional information about research on reasoning and proof is in Section 1, Part 2. InquiryGuided, ProblemOriented
Learning Instructors at North Caroline State University use InquiryGuided
Learning (IGL) to teach Foundations of Advanced Mathematics, Abstract
Algebra, and Introduction to Analysis). The primary aim of the IGL method is
to promote habits of inquiry through guided and increasingly independent
investigation of questions and problems for which there is no single answer while
requiring students to take responsibility for their own work through weekly
graded homework and conventional closed book exams. Foundations of Advanced
Mathematics is geared toward mathematics majors but taken by majors in many
disciplines. The course focuses on critical thinking (reading and analyzing
mathematical arguments and writing mathematical proofs) and content (logic
and the language of mathematics, methods of proof, theories of sets,
relations and functions). Michael Shearer and JoAnn Cohen are working on
integrating the IGL method into other courses. To make a classroom conducive
to group work, they recommend having plenty of blackboard or whiteboard space
and round tables if possible. One type of inquiryguided learning is the method of R.L.
Moore, which is discussed in Part 1, Section 2. The following are some
articles recounting experiences using either the Moore method or a ’modified
Moore methodâ? in upperlevel courses for mathematics majors: ’My
Experiences with the Various ’Texas Styles’ of Teachingâ? by Jack Brown,
Auburn University, ’The
Texas Method and the Small Group Discovery Methodâ? by Jerome Dancis and
Neil Davidson, University of Maryland, ’The
Moore Methodâ? by F. Burton Jones, University of Colorado, and ’Comments on
MooreMethod Teachingâ? by Mike Reed, Duke University. At Harvey Mudd College, there are two versions of the Putnam Seminar. One is suitable
for college underclassmen and the other is for more advanced students. All
participants are encouraged to try out for the Putnam Exam team. In addition,
every mathematics major is required to take a full year of the Mathematics
Clinic or the Senior Thesis. In the Mathematics
Clinic ’teams employ mathematical modeling, statistical analysis, and a
whole host of formidable numerical approaches to concentrate on unsolved
problems for industry and government.â? The Senior Thesis ’offers the
student, guided by the faculty advisor, a chance to experience a taste of the
life of a professional research mathematicianâ? doing work that ’is largely
independent with guidance from the research advisor.â? In Texas A & M University’s Putnam
Challenge course students deal with a variety of mathematical problems to
develop problemsolving techniques and prepare to take the Putnam exam.
See Doug Hensley’s fall 2004 syllabus.
Jonathan Duncan at Walla Walla College occasionally offers a course
with a similar focus. The website The
Art of Problem Solving is intended for faculty preparing students for
precollege mathematics competitions but contains many resources useful at
the college level as well. The MathPro
Press website contains links to thousands of online problems among other
resources. Amy Cohen cited Rutgers University’s Introduction to Mathematical
Reasoning
course, which is required as a prerequisite for Advanced Calculus and
Abstract Algebra, as addressing ’not only how to write proofs but how
to investigate a conjecture to find proofs or counterexamples.
Depending on the instructor, there is some group work and workshop
writeup and even sometimes presentations in class where the students
attempt to understand and critique other students’ efforts.â? In 199495
Rutgers University added workshop meetings to Advanced Calculus (Math
311) and Introduction to Abstract Algebra (Math 351). (See the
listing of Rutgers math courses and
Stephen Greenfield’s homepage
and click on the course numbers.) All mathematics majors must pass one of
these courses or an upperlevel linear algebra course, and all candidates for
secondary school teacher certification must pass the algebra course.
Cohen wrote:
Additional information about InquiryGuided, ProblemOriented Learning is in Part 1, Section 2.
Classroom Practice: Writing, Reading, and Exploring Proofs Robert Rogers, State University of New York Fredonia, provides students with a simulation on the blackboard of what a mathematician might do on scratch paper while developing a proof. Since starting this practice, he has refined his method and published a description and some reflections in ’Using the Blackboard as Scratch Paperâ? (2002). Virginia (Jimmy) Buchanan of Hiram College reports that she begins a class period by randomly assigning homework problems to students for them to present to the class. Students come to class early to see which problem has been assigned to them and to negotiate and trade problems, if desired, with their classmates. Once class begins, each student is responsible for explaining his or her problem to the class by writing a proof, solution, or construction on the board and giving a verbal explanation. The student then answers questions posed by classmates and by the instructor. If errors occur, the class as a group works to resolve the problem and complete the solution. Susanna Epp, DePaul University, assembled suggestions
for teaching proof from a variety of sources: James
Sandefur, Georgetown University, gave a talk ’Writing
Proofs: How Do We Teach Students What Is Second Nature To Us?,â? with a
link to a more detailed paper,
in the 2004 MAA session ’Getting
Students To Discuss And Write About Mathematics,â? which contains many
other excellent discussions about the subject. Moira McDermott, Gustavus Adolphus College, emphasizes
reading, writing, and proofs in her relationbased structures course. The
following are excerpts from the syllabus
for this course. (McDermott credits Barbara Kaiser and John Holte for some of
the ideas): Reasoning with Data: Probability and
Statistics Gustavus Adolphus College offers an
introduction to statistics course, designed primarily for mathematics and
science majors. It uses Introduction to the Basic Practice of Statistics
by David S. Moore and George P. McCabe and includes supplementary material to
make connections to calculus through the topics of the normal distribution,
leastsquares regression and probability. Mathematics majors typically take
the course in their sophomore year, often when they are also taking a more
prooforiented course such as linear algebra or theory of calculus. Since
introducing the course, the department has seen an increase in the number of
students who have selected the upperlevel probability and mathematical
statistics sequence to satisfy their depth requirement. Allan Rossman and Beth Chance (Cal PolySan Luis Obispo)
have developed a calculusbased introduction
to probability and statistics. The course is intended for mathematics,
statistics, computer science, economics, and engineering majors and attempts
to combine data analysis, an emphasis on concepts, exploration of the
mathematical underpinnings of the subject, and active learning. It
includes a variety of specific data analytic techniques, such as exploratory
data analysis, confidence intervals, tests of significance, ttests and
intervals, regression analysis, contingency table analysis, analysis of
variance, along with a broad introduction to fundamental statistical ideas,
such as variability, randomness, distribution, association, transformation,
resistance, sampling, experimentation, confidence, significance, power, and
model. Duke University offers a calculusbased course to introduce the concepts, theories, and methods of statistical modeling and inference for mathematics majors. Its goal is to explore the foundations of scientific reasoning and inference and arouse curiosity through applications in medicine, genetics, policy, astronomy, physics, economics, finance, and education, among others. Students also learn to use statistical computing software. The course based on Stat Labs: Mathematical
Statistics Through Applications emphasizes reasoning and is suitable for
mathematics majors. It was developed by Deborah Nolan and Terry Speed,
University of California at Berkeley and is described in Part I,
Recommendation 4 of the CUPM Curriculum Guide 2004. Reading, Writing, and Speaking Mathematics Several people have written guides for college students
about writing mathematics: Fernando Guvea, Colby College, has developed a
selfevaluation checklist
for students to use before handing in a mathematical paper. Mount Holyoke College) requires all mathematics majors to
take the sophomorelevel Laboratory in
Mathematical Experimentation, a course in which students typically write six
10page reports on mathematical experiments. The link contains a
description of the course and the table of contents and first two chapters of
a book that was developed for it. Six weeklong writing assignments are a main learning and
assessment tool in some versions of the sophomorelevel linear algebra course
at New Mexico State University. Writing is also emphasized in some versions
of the linear
algebra course at Illinois State University. Descriptions of both
are in Part 2,
Section B2. In the fall semester at Macalester College mathematics
seniors attend sessions to prepare for the capstone seminar in
which they receive general advice about how to write their senior project
report. Each student also has a faculty advisor to help guide his or her
work. According to David Bressoud, seminar meetings ’address issues such as
using information resources, tips on TeX or other mathematical typesetting,
and how to use figures and diagrams effectively. In the meantime, students
are working individually with their advisers.â? Students receive feedback on
their first draft and produce a second, which is reviewed with one more
chances for revision before the final submission date. In exit interviews
with Macalester students, ’all have praised the capstone seminar as a
positive experience, several have described it as the most important part of
their undergraduate careers, and many have said how important it was during
employment interviews.â? At the University of Redlands, mathematics students take a
senior
research seminar during which they write a formal research proposal, at
least three preliminary research reports of 35 pages each, an abstract for a
formal research presentation, and at least two 20 to 30page drafts of their
research paper. Carlton College requires every major in the fall or winter
of the senior year to ’give a public presentation on an assigned mathematical
topic. He/she will have a total of five weeks to prepare the talk. The
student will give a private version of the talk at the three week point to a
committee of two faculty members. This presentation gives the student a
chance to rehearse the talk and to receive feedback and suggestions from the
committee. ... Each major must attend twelve other comps talks during
his or her junior and senior years.â? The Oral
Comps website contains an extensive set of preparation material, much of
which was adapted from ’Giving Oral Presentations in Mathematics,â? by Deborah
S. Franzblau (PRIMUS, March 1992, Vol. II, no. 1), ’How to talk mathematicsâ?
by Paul R. Halmos (Notices Amer. Math. Soc., 21(3):155’158, 1974) and Handbook
of Writing for the Mathematical Sciences by Nicholas J. Higham, SIAM,
Philadelphia, PA, 1993, Second edition 1998.) Additional information about creating and assessing
writing assignments is in Part 1, Section 2.
According to Pam Crawford, speaking in the 2003 MAA
session ’Helping Students Give Effective Mathematics Presentations,â?
mathematics majors at Jacksonville University satisfy the university
requirement of a speakingintensive course in their major by taking a history
of mathematics capstone course in which they make two generalaudience
presentations (10 minutes each) and also report orally on a term paper
(30 to 45 minutes). Because the presentations are most students’ first
experience of speaking about mathematics for a lengthy period of time, the
course distributes handouts with advice. One is ’Giving Oral Presentations in
Mathematics,â? by Deborah S. Franzblau (PRIMUS, March 1992, Vol. II, no. 1). Oral presentations are also required in a number of the courses at Keene State College, where faculty identified students’ ability to communicate mathematics effectively through oral presentations as an important learning goal. For example, students in an introductory statistics course make brief but formal presentations on group projects, and students in most upperlevel mathematics courses make longer presentations of their project work. The presentations by upperlevel students are sometimes made not only before the students’ peers, but also before the mathematics faculty as part of a weekly seminar program. Additionally, students have made presentations outside the department at a collegewide Academic Excellence Conference, MAA Northeastern Section regional meetings, and the Hudson River Undergraduate Mathematics Conference. For further information, including the guidelines that are used for making presentations and grading rubrics, see the assessment study by Richard Jardine and Vincent Ferlini. Additional information about developing mathematical thinking and communication skills is in Part 1, Section 2.
All majors should have experiences with a variety of technological tools, such as computer algebra systems, visualization software, statistical packages, and computer programming languages. See
Part 1 Section 5,
for general information about technology resources and examples of how
technology is being used in undergraduate mathematics courses, especially in
lowerdivision courses. Resources for the Use of Technology
The Electronic Proceedings of the
International Conference on Technology in Collegiate Mathematic (EPICTCM)
contains articles about a wide variety of topics related to the use of
technology in the classroom, a number of which concern upperlevel courses.
The articles are indexed by year, by author, and by keyword. In particular,
links from the main page lead to various mathematical topics and also to
topics identified by type of software. For instance, the following are links to articles from the EPICTCM about the
use of CAS packages in mathematics courses: Another general source of information is The
Math Forum Internet Mathematics Library. The Library contains links to a
very large number of technology resources for topics in modern algebra
, real analysis, complex analysis,
geometry, topology, number theory, discrete mathematics,
probability, statistics, numerical analysis,
dynamical
systems, history
and biography, logic
and foundations, and others. A number of software
programs are widely used in geometry courses for prospective teachers: the Geometer's Sketchpad, Cabri3D, Cinderella and GeoGebra (which is free). Flash
applications illustrating straightedgeandcompass constructions of a perpendicular
bisector, parallelogram,
rectangle, rhombus, square, circumcircle,
and incircle are
available on the website of R. Dassonval.
The text is in French but the animations can be viewed simply by clicking on
the start arrows. The Journal of
Online Mathematics and its Applications (JOMA) contains articles,
modules, mathlets, and reviews, many of which involve uses of technology in
mathematics education. For example, the article Technology
in the UpperLevel Curriculum by Ellen J. Maycock, DePauw University, describes her use of technology in several upperlevel mathematics courses:
abstract algebra, real analysis, and geometry, and gives references for each.
In her conclusion Maycock states: ’Instead of working through one example
with paper and pencil in the course of an hour, the student can generate six
or eight with the computer ’ and with the dynamic geometry software,
thousands. Patterns can emerge from the examples. Students are much more able
to see the concepts behind the formalism and the theory. . . Primarily,
however, the lab experiences changed the dynamics of the courses. A carefully
constructed syllabus became a hindrance for each course ’ the
unpredictability of the lab experience meant that I had to be prepared to
discard my lesson plans for the day and respond to their comments and
questions. I had to ask myself what my basic goal was in each class and be
flexible about whether a list of theorems could be covered ’ I refocused on a
sparse collection of fundamental concepts in each course. Students felt
empowered by their own discoveries, and they began to provide at least as
much energy to the classroom as I did.â? The MAA Online website contains a review by Andrew B.
Perry, Springfield College, of the book Innovations in Teaching Abstract
Algebra, ed. by Allen C. Hibbard and Ellen J. Maycock (MAA Notes, volume
60, Mathematical Association of America, 2002). Perry writes: "Many
of the papers in this volume describe the author's experience teaching with a
particular software package, with six packages represented in at least one
paper: Finite Group Behavior (FGB), ISETL, GAP, MATLAB, Maple, and
Mathematica. There is enough description of each software for an instructor
to get a sense of whether he or she might profitably include the software in
his or her course. The editors have thoughtfully included information on
obtaining any of the software described in the book.â? A website has been created
with abstracts of all the articles in the book and sources for all materials,
software, and websites referenced in the book’s articles. Another review in MAA Online,
by Mihaela Poplicher, University of Cincinnati, of the book Multimedia Tools for
Communicating Mathematics: Compression, Simplification, and Multiresolusion,
edited by Jonathan Borwein, Maria H. Morales, Konrad Polthier, and JosÃ© F.
Rodrigues, contains several links to papers illustrating the use of
technology in geometry, linear algebra, topology, graph theory, and the
history of mathematics. A PowerPoint
presentation by Matthias Kawski, Arizona State University, discusses the use of technology as a
tool to visualize mathematical concepts. Kawski's
webpage provides information,
including technology links, for integrating technology into over 18 courses,
including various levels of calculus, differential equations, linear algebra,
analysis, control theory, and other advanced mathematics. A variety of
statistical packages are used in upperlevel undergraduate courses. They may
be incorporated into a yearlong course in probability and statistics, or
offered as a laboratory accompaniment to such a course, or given as a
standalone course in statistical software. SAS, Minitab, SPSS, or BMDP are
widely used commercial programs, and the statistical software package R,
which is opensource freeware, appears to be
gaining broader acceptance. The
archive of the online Journal of
Statistics Education is searchable and contains all articles published
since 1993. The UCLA Stat Computing
Portal contains links about statistical computing using SAS, Stata , SPSS , and SPlus, and R, as well as other statistics
resources. The Electronic
Proceedings of the International Conference on Technology in Collegiate
Mathematic (EPICTCM) also has links
to articles about the use of the statistical package Minitab.
Gordon Royle, University of Western Australia, compiled a Combinatorial Catalogue,
which gives detailed information about specific graphs, geometries, designs, and
groups. John Stembridge, University of Michigan, constructed a home page consisting of Maple Programs, which provide an environment for computations involving
symmetric functions, partially ordered sets,
root systems, finite Coxeter groups, and
related structures. Daniel R. Grayson, University of Illinois at UrbanaChampagne and Michael E. Stillman, Cornell University, developed Macaulay 2, a package that supports work in algebraic geometry and commutative algebra. Using a Computer LanguageThe Electronic
Proceedings of the International Conference on Technology in Collegiate
Mathematic (EPICTCM) contains a number of articles that link programming
to the teaching of mathematics. Examples include ’Implicit
Differentiation on the TI92+ Calculator as an Illustration of Some Powerful
Programming Features,â? ’Using Microsoft COM for Complex Variables,â? and
’Using Visual BASIC to Create a Graphical User Interface for Matlab.â? Ed Dubinsky and
others have produced versions of courses from calculus and discrete
mathematics to abstract algebra that use programming in the free software
language ISETL
to try to lead students to understand sophisticated mathematical concepts.
Resources include the book Learning Abstract Algebra with ISETL by Ed
Dubinsky and Uri Leron (SpringerVerlag, 1994) and the article Discovering
Abstract Algebra with ISETL by Ruth I. Berger in the volume Innovations
in Teaching Abstract Algebra, ed. by Allen C. Hibbard and Ellen J.
Maycock (MAA Notes, volume 60, Mathematical Association of America, 2002). Many colleges and universities require mathematics majors
to take a course in a specific programming language or in general principles
of computer science. At present, the most frequently used
languages used in such courses are Java and C++, although Pascal and Fortran
meet the requirements at some institutions. All majors should have significant experience working with ideas representing the breadth of the mathematical sciences. In particular students should see a number of contrasting but complementary points of view:
Majors should understand that mathematics is an engaging field, rich in beauty, with powerful applications to other subjects, and contemporary open questions. The site www.geometry.net/math.html has a large number of links to mathematics resources. Major headings are Mathematics Sites, Mathematics Books and Pure Mathematics. Under each heading are twelve to twenty additional subheading links to again a large number of index links. For example under Mathematics Sites and then Pure and Applied Mathematics, there are 96 subject indexes from Abstract Algebra to Wavelets. Under Abstract Algebra there are 119 links to various books, publications, course offerings and information web sites. The book entries are linked to a commercial provider, but the other resource links connect to institutions and individual sites. Within each index there is a search option. The website Innovative Mathematics Majors in Small/Medium Departments contains summaries of the talks given at the session of the same name at the 2005 MathFest. The Massachusetts Institute of Technology MITOpenCourseWare is a free publication of course materials used at MIT. Materials in the mathematics section include syllabi, lecture notes, problems sets, exams, etc., for a large variety of courses. Discrete Mathematics and Data
Analysis
At the State University of New York at Oswego, the mathematics major requires a course in discrete mathematics and a course in statistics.
The Creative Visualization Labs session at the 2003 Joint Mathematics Meetings, organized by Cathy Gorini, Sarah Greenwald, and Mary Platt, invited papers describing a complete lab or series of labs using computers, technology, dynamic software and/or manipulatives aimed at increasing visualization skills. Ten of the thirteen papers that were presented are posted on the website, and all thirteen have abstracts and contact information. Sample titles include: Computer Activities for College Geometry; Walking, Folding, and Computing to Visualize Geometric Concepts; Making the Transition from Euclidean to NonEuclidean Geometry Through Exploration; and the Spherical Geometry Project. Geometry in the Undergraduate Syllabus contains a 1993 report by a working group in Europe that considered the role of geometry in the undergraduate curriculum. The sections of the report are Introduction, Geometry for its own sake, Geometry and Algebra, Exploring Geometry, Geometry, Logic and Language, and Geometry and Planetary Motion.
Examples of geometric thinking and visualization outside geometry courses include the Bridge Project at Oregon State University, which encourages geometric visualization as a problemsolving technique in vector calculus. See also the resources listed under visualization in Part 1, Section 5 and the geometry resources in Part 2, Section D.1. Statistics and Probability and Data Analysis See Part 2, Section C.1, Reasoning with Data: Probability and Statistics Linkages ’ Algebra and Discrete Mathematics Algebra and discrete mathematics encompass theoretical and
applied aspects of mathematics that are foundational for matrix analysis,
modern algebra, number theory, combinatorics, and graph theory. They
have significant impact on applications arising in statistics (linear models,
experimental designs), probability (random models), operations research
(mathematical programming, network analysis), communication engineering
(coding theory, cryptography), and computer science (analysis of algorithms,
nonnumerical computing). One result is the possibility to make connections
among these mathematics topics in undergraduate courses. Some books that can
be used as resource material are From
ErrorCorrecting Codes through Sphere Packing to Simple Groups,
by Thomas M. Thompson, Proofs
and Confirmations: The Story of the Alternating Sign Matrix Conjecture
by David Bressoud , Algebra
and Tiling by Sherman Stein and Sandor Szabo, Identification
Numbers and Check Digits Schemes by Joseph Kirtland, Introduction
to the Theory of ErrorCorrecting Codes by Vera Pless, A
First Course in Coding Theory by Raymond Hill, and Elements
of Algebraic Coding Theory by
L. R. Vermani. Examples of courses that link algebra and probability are Discrete
Markov Chain Monte Carlo by George Cobb, Mount Holyoke College,
which involves a mix of elementary graph theory, probability, and linear
algebra, and Stochastic Processes courses, such as those at University of
California Berkeley and Arizona State
University. Additional information about George Cobb’s course is
contained in the article An Application of
Markov Chain Monte Carlo to Community Ecology by George Cobb and YungPin
Chen. Another way to encourage students to become aware of connections among mathematical topics is through a regular schedule of seminar or math club talks. For instance, each semester, the Clemson University mathematics department sponsors an Algebra and Discrete Mathematics Seminar to which undergraduate students are invited. In Tulane University’ Senior Seminar students are required to attend talks in the Student Seminar of the department and to prepare a talk to deliver there themselves. One purpose of the talks is to broaden students’ experience as mathematics majors and to make them aware of parts of mathematics that they may not have been exposed to in their classes. Another goal of the Senior Seminar is to improve their oral and written expression about mathematics. A large number of the articles recommended to students as bases for their presentations are on topics that link algebra and discrete mathematics. Linkages ’ Algebra and Geometry The emergence of computational methods in algebraic geometry led to interactions with a number of other areas, such as combinatorics, optimization, statistics, and splines. The 1998 workshop: Algorithmic Algebra and Geometry: Summer Program for Graduate Students of MSRI Sponsoring Institutions sought to introduce participants to these ideas and topics. Ideals, Varieties and Algorithms (Cox, Little and O’Shea, 1997), an undergraduate text with a focus on computational methods, was the prerequisite for the main lectures. The book discusses systems of polynomial equations ("ideals"), their solutions ("varieties"), and how these objects can be manipulated ("algorithms"). This workshop also introduced the use of specialized computer algebra systems such as Macaulay, Macaulay2, and GAP, which are aimed at these problem domains. This text has also been used in the Seminar in Mathematics (Elementary): Algebraic Geometry from an Algorithmic Point of View at the State University of New York ’ Stony Brook and in the Groebner Bases course taught by Rekha R. Thomas at the University of Washington . Field Theory and its Classical Problems by Charles Hadlock (1978) begins with the geometric construction problems of antiquity, continues through the constructibility of regular ngons and the properties of roots of unity, and then moves on to the solvability of polynomial equations by radicals, and. beyond. The logical pathway is historic, but the terminology is consistent with modern treatments. No previous knowledge of groups, fields, or abstract algebra is assumed. Notable topics treated along this route include the transcendence of e and of pi, cyclotomic polynomials, polynomials over the integers, Hilbert's, irreducibility theorem, and many other gems in classical mathematics. Historical and bibliographical notes are provided, as are complete solutions to all problems. The MathWorld site provides some historical background to geometric construction and algebra. The site links the basic terms used in this description to definitions and explanations. Linkages ’ Number Theory and Geometry One part of the 2001Park City Mathematics Institute (PCMI)
was a course on the Euclidean
algorithm and its applications to algebra and the theory of numbers. A
complete set of course notes, including a section on curve fitting, can be
downloaded from the website. The Geometry
of Numbers by C.D. Olds, Anneli Lax and Giuliana Davidoff presents a
selfcontained introduction to the geometry of numbers, which begins with
lattice points on lines, circles and inside simple polygons in the plane and
gradually leads up to the theorems of Minkowski and others who succeeded him.
The part of David Rusin’s Mathematical Atlas site (described earlier) that is devoted to number theory contains information and web links for connections between number theory and many other branches of mathematics. Linkages ’ Complex Variables and Geometry With computer graphics programs, one can now visually explore the geometry of the complex plane and various mappings of one or more complex variables. A website from The Geometry Center displays several such images, and the Living Mathematics Project, hosted at SunSITE University of British Columbia, has an applet that allows one to experiment with the behavior of certain functions of a complex variable. Other applets on the site encourage exploration of flows of vector fields, Bessel functions, and Fourier series, among other things. While somewhat advanced to use as a primary text for undergraduates, Complex Analysis: The Geometric Viewpoint by Steven G. Krantz is frequently cited as supplementary reading for undergraduate courses. Krantz explains the role of Hermitian metrics and of curvature in understanding the Schwarz lemma, normal families, Picard's theorems, conformal mappings, and many other topics. Linkages ’ Probability and Analysis At Duke University, Greg Lawler’s Real Analysis course supplements the primary text with Measure Theory and Probability by Malcolm Adams and Victor Guillemin. and Probability and Measure by Patrick Billingsley. The prerequisites for Lawler’s Stochastic Processes course are a calculusbased undergraduate probability course and a course in linear algebra. Additional resources about connections between probability and analysis are on Dave Rusin’s Mathematical Atlas pages on Probability Theory and Stochastic Processes. Powerful Applications and Contemporary Questions A number of areas of mathematics have led to important contemporary applications. These include, among many others, cryptography as an application of number theory, errorcorrecting codes as an application of algebra, computer graphics as an application of linear algebra, projective geometry, and splines, and robotics as an application of computational algebraic geometry. Allen Broughton’s Mathematics
of Image Processing course at RoseHulman Institute of Technology covers
the mathematical basis of many of the ideas behind image processing such as
filtering, filter banks, the discrete Fourier and cosine transforms and the
discrete wavelet transform. The theory is balanced by concrete applications
to various image processing problems with a special emphasis on image
compression.
Victor Katz, University of the District of Columbia, and Karen Dee Michalowicz, the Langly School, edited Historical Modules for the
Teaching and Learning of Mathematics, which are available on CD. The
modules are collections of lesson materials designed to demonstrate the use
of the history of mathematics in the teaching of mathematics. They are
intended for use in both college mathematics courses, especially those for
prospective teachers, and the K12 classroom. There are four undergraduate programs
in mathematics at the Massachusetts Institute of Technology. The first three
lead to the degree Bachelor of Science in Mathematics (General Mathematics,
Theoretical Mathematics, and Applied Mathematics), and the fourth to the
degree Bachelor of Science in Mathematics with Computer Science. There
is also an option that allows students, with the help of their advisors, to
design their own programs. This selfdesigned option is particularly popular
with students who plan to combine their mathematical studies with an indepth
exploration of another field, such as economics, physics, or business.
In 2002, 76 students completed the BS in Mathematics and 3 the BS in
Mathematics and Computer Science. The General
Mathematics option requires only differential equations plus eight 12unit
electives, at least six at an advanced level. Gilbert Strang observed that while his colleagues
knew how many students chose the major, it has little knowledge of why
students chose (or didn't choose) to study mathematics. As an experiment, he
sent five questions [see below] to the MIT math majors and got 50 answers
that same evening. In reporting on his experiment he wrote:
Mathematical sciences departments should require all majors to:
See ideas for linked courses in Part 2, Section C.3. The University of Redlands Department of Mathematics has required a Senior Research Seminar of its mathematics majors for over 40 years. The major assignment for the course is a (usually expository) research project in an area of mathematics selected by the student. Primary emphasis is placed on improving students' independent study, problem solving, research, reading, writing and oral presentation skills. An unwritten objective is to provide peer support for students as they prepare to make the transition to graduate school and/or a career. The seminar homepage has links to a great deal of information on project guidelines, recent topics, etc. The Macalester College mathematics and computer science degree requirements include a capstone project involving a written report and an oral presentation. All presentations are given on a single capstone day during which regular mathematics and computer science classes are canceled. The students in those classes are required to attend at least one of the capstone presentations. Because of canceled classes and required attendance, the seniors speak to large audiences. A capstone seminar is designed to prepare seniors to communicate their results effectively. Detailed information about the seminar is now on a restricted website, but a previous site lists examples of past capstone projects, and another has links to information on expectations, topics, etc. At Portland State University, the faculty in the department of mathematics and statistics used a student survey to assist in designing a seniorlevel capstone experience for their students. A report discussed students’ responses to the survey questions. One consequence of the process was the decision to make the course satisfy the university’s capstone requirement, the courses for which are listed under ’university studiesâ? rather than mathematics and involve both working on a community project and linking study in the major to students’ broader programs. Thus, for example, the decision was made to include presentations to inner city high school students as part of the course requirement. The Senior Exercise at Kenyon College is designed ’to engage each senior in the exploration and communication of mathematical ideas beyond material covered in courses taken, or to be taken, by the student.â? It includes two components: (1) students take the Major Field Test; (2) they study independently and write a paper on a topic of their choice. The website gives detailed information to the student on expectations at each step of the project. Some schools that have instituted senior level capstone courses are using the courses to help assess and improve their programs. For example, see ’An Assessment Program Built Around a Capstone Course,â? by Charles Peltier, St. Mary’s College. The webpage for St. Mary’s Senior Comprehensive Project contains information about the capstone course, called Proseminar, and the more general project of which it is a part. Another example illustrating how a capstone course may be used to assess the effectiveness of the mathematics major is ’Using a Capstone Course to Assess a Variety of Skills,â? by Deborah A. Frantz, Kutztown University. One resource for capstone course project
ideas is the Math Pages website.
It contains links to articles on a variety of topics, with each topic heading
linking to as many as 50 or more articles. To give a sense of the website, a
couple of titles are given with each of the following topic headings:
combinatorics and graph theory (The Four Color Problem and The Dartboard
Sequence), geometry (Sphere Packing in Curved 3D Space and Heron's Formula
and Brahmagupta's Generalization), probability and statistics (The Gambler's
Ruin and Biased and AntiBiased Variance Estimates), number theory (Fermat's
Last Theorem for Cubes and Quadratic Congruences), set theory and
foundations (Fractal Logic and Reconstructing Brouwer), calculus and
differential equations (Curvature: Intrinsic and Extrinsic and Series
Solutions of the Wave Equation), and history (Zeno and the Paradox of Motion
and Legendre's Prime Number Conjecture). In addition, the website has
articles on relativity, physics, music, animated (Java) illustrations, and a
list of quotations. Mathematicians should collaborate with colleagues in other disciplines to create tracks within the major or joint majors that cross disciplinary lines. UCLA has a joint major in mathematics and applied science, which is intended for students who are interested in mathematics but also have a substantial interest in the applications of mathematics to other areas. Options include actuarial mathematics, management and accounting, medicine and life sciences, history of science and an individual plan subject to approval by the undergraduate vicechair. UCLA also has a joint major in mathematics and economics. Courses are quarter courses, and the department majors require a list of preparatory course plus 13 upperdivision courses. Brown University has several interdepartmental concentrations for undergraduate students in the department of mathematics and the division of applied mathematics. The AMS book Towards Excellence (p. 143) states: ’Current standard concentrations include: mathematicscomputer science, mathematicseconomics, mathematicsphysics, applied mathbiology, applied mathcomputer science, applied matheconomics â?¦ and applied mathpsychology â?¦ Some of these programs are small and geared to preparation for advanced study. Others are large (mathematicseconomics and applied matheconomics) and have gained a reputation as excellent preparation for careers in business.â? Additional information for the applied mathematics program combinations is given in the Applied Mathematics Guide to Undergraduate Programs. The University of Washington offers an interdepartmental major in applied and computational mathematical sciences. The AMS book Towards Excellence (p. 143) states: ’The Departments of Applied Mathematics, Statistics and Computer Science recently worked together to create a new interdisciplinary undergraduate degree program â?¦ called the Applied and Computational Sciences (ACMS) degree program. â?¦ The program seeks to prepare its students to pursue a variety of positions in industry after graduation or to go on to graduate or professional school in many fields.â? The Interdisciplinary Mathematics Program at the University of New Hampshire allows students to complete a joint major in mathematics and one of five other disciplines, including computer science, economics, electrical science, physics, and statistics. The program is designed to prepare students for employment in various areas of applied mathematics, as well as for graduate work in these fields. Each interdisciplinary major option consists of ten mathematics courses and at least six courses in the discipline of the option. The statistics option requires eight courses in mathematics in addition to the core requirements. The mathematics program in the Department of Mathematics and Computer Science at Ithaca College offers bachelor's degrees in mathematicscomputer science, mathematicscomputer science (teacher education), mathematicsphysics, and mathematicseconomics. The mathematicseconomics degree, for example, requires 2728 credits of mathematics/computer science and 27 credits of economics. At Indiana University the Interdepartmental Major in Mathematics and Economics is designed to enable students to model economic questions mathematically, and to analyze and solve those models. Students take 7 courses in mathematics, 7 in economics, and at least 1 in statistics. As Simmons College the Major in Financial Mathematics is offered jointly by the mathematics and economics departments. It is intended to serve students who are interested in applying the principles of mathematical and economic analysis in the financial services industry. Harvey Mudd College (HMC) offers two joint majors that involve mathematics. The mathematics and computer science departments together administer a joint major in computer science and mathematics. Its purpose is to provide an integrated program of study for students who are interested in the interdisciplinary connections between computer science and mathematics. Depending on how electives are selected, the program would position joint majors for graduate study in either computer science or mathematics, or to enter the work force. The mathematics and biology departments together administer a mathematical biology major. This major prepares students for graduate study in either biology or applied mathematics or for employment in industry. HMC's technical core provides mathematical biology majors with a strong multidisciplinary foundation, and the college offers many opportunities for students to engage in interdisciplinary research in biomathematics and quantitative biology. The major is sufficiently flexible to allow students to concentrate in a particular area of mathematical biology. Every HMC student, regardless of major, takes the equivalent of four semesters of mathematics (calculus, multivariable calculus, linear algebra, and differential equations) as part of the general core curriculum. Fifteen courses beyond the HMC core are required for the joint major. DePaul University has a Joint MathematicsComputer Science major, which is intended to enable students to develop the necessary background to be able to work in areas that depend on knowledge from both fields. It is designed to prepare the student for graduate study in various areas of computer science such as theoretical computer science, graphics, and computational methods and in areas in applied mathematics such as numerical analysis or discrete mathematics. It is also expected to be good preparation for the more intellectually demanding jobs in computer software development. Rutgers University has a BioMathematics Interdisciplinary Major in which students do about half their coursework in biology and half in mathematics. Mathematics requirements include single and multivariable calculus, introductory linear algebra, introduction to differential equations, probability and mathematical statistics, differential equations in biology, discrete and probabilistic models in biology, and one additional elective. Another joint major is Statistics/Mathematics to provide a stronger preparation for graduate study in statistics. The program offerings at Utah State University include several ’composite majors,â? which allow students to choose from mathematics and statistics, mathematics and statistics education, mathematics and computer science, mathematics and electrical engineering, and mathematics and physics. Utah State also offers a minor in biomathematics. Other schools with joint majors in mathematics and computer science include Drew University, New York University, University of Oregon, Yale University, University of California San Diego, Emory College (of Emory University), Massachusetts Institute of Technology (major is called mathematics with computer science), Middlebury College and the University of Illinois at UrbanaChampaign. Other schools with joint majors in mathematics and economics include the University of Pittsburgh, Lafayette College, University of California San Diego, the State University of New York at Buffalo, New York University, Bowdoin College, Marquette University, and Mount Holyoke College. See also the report by Gilbert Strang,
Massachusetts Institute of Technology, in Part 2, Section C.3. In order to recruit and retain majors and minors, mathematical sciences departments should:
Two useful references for information about what causes attrition among mathematics majors are the following: Talking About Leaving: Factors Contributing to High Attrition Rates Among Science, Mathematics, and Engineering Undergraduate Majors by E. Seymour and N. Hewitt, Bureau of Sociological Research, University of Colorado: Boulder, CO, 1994 and Talking about Leaving: Why Undergraduates Leave the Sciences by E. Seymour and N. Hewitt. Boulder, CO: Westview Press, 1997. (Reviews: 1 2) A reference for what factors appear to retain mathematics majors is Math Education at Its Best: The Potsdam Model by D. K. Katta, Framingham, MA: Center for Teaching/Learning of Mathematics, 1993. An article by Reuben Hersh in the Humanistic Mathematics Network Journal discusses the general issue of student retention in the context of general improvement of the educational experience for mathematics undergraduates. In the article Hersh quotes an MAA pamphlet from 1972 and the books by Seymour, Hewitt, and Katta that are mentioned above. Designing Introductory Courses to be Effective and Engaging The mathematics department at the University of Rochester increased the number of its mathematics graduates from 14 to 44 in three years. A report written for the Rochester Review attributed part of the increase to changes that were made in the rigorous foursemester honors calculus sequence. While instituting the changes, faculty member Naomi Jochnowitz taught all four courses in the sequence. She told students that ’math doesn’t close any doors; it only opens them,â? and she encouraged ’students to push themselves and to take on intellectual challenges, assuring them the faculty will be there to support them all the way.â? In addition to three hours of class a week, students in the sequence are required to take a weekly twohour workshop led by a teaching assistant. The purpose of the workshop is to get students interacting with each other while working on homework problems. Students report that the camaraderie which develops during the workshops continues into friendships outside of class. The department provides an online Mathematics Survival Guide and has developed an online homework system, WebWork, which gives students instant feedback on their homework answers. Encouraging Prospective Majors The mathematics department of the State University of New York ’ Fredonia has created a course called Honors ProblemSolving. (Click the links for ’Programâ? and ’Courses.â?) Each fall, just before course selection for the spring semester, a letter is sent to strong freshman calculus students telling them about the course and letting them know that they have been recommended by their calculus instructor for participation. The course is designed to help students learn how to attack a wide array of complex and openended problems, to work well as part of a team, to communicate proficiently with others about mathematical problems, and to appreciate mathematics as a discipline with exciting problems that can be fun to work on. Grades are based on class participation, writeup of problem solutions, and class presentations. One of the course goals is to keep good mathematics majors interested, and another is to encourage nonmathematics majors to take more mathematics. So during registration for the fall semester, students in the course are given information about mathematics majors and minors. The links from the department website for ’Assessment,â? ’Alumni,â? and ’Eventsâ? contain additional information that are relevant to the success of the department in encouraging prospective majors. Some important resources for encouraging majors from underrepresented groups are the websites of the MAA program Strengthening Underrepresented Minority Mathematics Achievement, the Association for Women in Mathematics, the National Association of Mathematicians, Advancing Hispanic Excellence in Technology, Engineering, Math and Science, Inc., the Society for American Chicanos and Native American Scientists, the American Indian Science and Engineering Society, and the Women and Mathematics Information Server. At an individual institution, Colm Mulcahy developed a website with information about Spelman College mathematics alumnae who went on to earn graduate degrees in mathematicsrelated fields. The principal resource for nonacademic careers is Mathematical Sciences Career Information, jointly sponsored by the AMS, the MAA, and SIAM. There are many additional resources on the web that provide information about careers open to students majoring in the mathematical sciences. Some useful ones are Careers from the MAA’s Information for Undergraduate Students webpage, the Career Center from the American Statistical Association, Careers in Mathematics from Purdue University mathematics department, and Careers in Mathematics from Eastern Washington University. The Association for Women in Mathematics has a web brochure, called ’Careers that Count: Opportunities in the Mathematical Sciences,â? that contains information about the lives and careers of twelve women mathematicians. Many mathematics departments invite their graduates back to give colloquiums on what they’re doing or include information about alumni careers on their websites. One such department is St. Olaf (see, for example, the issue from March 19, 2007), and another is the State University of New York ’ Fredonia (click on ’Alumniâ?). Having concrete information about people who came through the same program they are following can give students confidence that they will be able to follow a similar path. Mentoring and Advising Mathematics Majors The American Mathematical Society website Undergraduate Mathematics Majors contains information about Graduate School, Summer Programs, REUs, Special Semesters, Math Links, Clubs, Conferences, Online Journals, Competitions, Prizes, Honorary Societies, Careers, Jobs, Internships, and a Brochure entitled Resources for undergraduates in mathematics. Contributors to the Project NExT session Preparing our
Math Majors for the Future: Advice on Advising, organized by Lisa Marano,
West Chester University, and Florence Newberger, California State University,
Long Beach, offered suggestions for mentoring and advising mathematics
majors. Versions of several of the suggestions are available on the Internet:
General
Information on Advising Math Majors by Lisa Marano; both a document and set
of slides
entitled ’So You’re an Advisor ’ Now What?â? by Sandra O. Paur, North
Carolina State University; information about the AdvisorAdvisee
Relationship from the Cornell University faculty handbook; and
information about internships and coop opportunities for undergraduates from
the American
Mathematical Society, ACM, Center for Talented
Youth, American
Statistical Association, and National Security Agency. The Center of
Excellence in Academic Advising at Penn State University offers a general
description of the importance of advising, the role of the adviser, adviser’s
tools and techniques, and references to advising resources. Handbooks (either paper or webbased) can help inform students about a department’s programs, what course they should start with, various careers open to mathematics majors, and the paths of study required for those careers. The handbook Academic Advising for Mathematics Majors from the State University of New York ’ Potsdam includes descriptions of course requirements and expectations, the methods of teaching used in the department, and four levels of mathematical maturity and understanding. Some other examples of webbased handbooks are those at Oberlin College, The College of William and Mary, Binghamton University (State University of New York), Queens University: Course Advice for Year 1 Students and Course Advice for Years 2 and 3 Students, Smith College, the University of Maine, Pennsylvania State University, Harvard University, the University of Washington, Duke University, the University of Iowa, Rochester University, the University of Oregon, and West Chester University (choose the ’Prospective Studentsâ? popup menu and click on ’Handbook for Mathematics Majorsâ?). CoCurricular Activities for Mathematics Majors Many departments informally and formally involve mathematics majors in cocurricular activities. Providing mathematics students with an informal place to study, do group projects or socialize with other majors is a key form of support at many schools. Such a room might be equipped with books and magazines such as G. H. Hardy’s A Mathematician’s Apology, Albers and Alexanderson’s Mathematical People, copies of textbooks that could be used as course supplements, and the MAA journal Math Horizons. The Northern Illinois University mathematical sciences department has a webpage devoted to alerting students to ’noncurricular mathematics activities for undergraduatesâ? It begins: ’Hey, you! All work and no play makes for dull students. Why not participate in some of our noncourserelated activities? They're open to all undergraduates, regardless of major.â? Xavier University’s NSFsponsored STEM Exposure Program ’is designed to enhance this community experience for students majoring in the fields of Mathematics, Computer Science and Physics by first creating a casual and open learning environment through organized social events and peer mentoring, and secondly, by instituting learning experiences within this community through tutoring programs and summer bridge programs.â? The following are some examples of cocurricular activities supported in
mathematics departments: Opportunities for students to serve as course assistants or mentors not only support students receiving the assistance but also motivate and encourage the students providing the help. Examples of such programs are Xavier University’s STEM Exposure Program, Rutgers University’s Peer Mentor Program, and Monmouth University’s Math Learning Center, where mathematics majors often begin tutoring students in collegealgebralevel courses as secondsemester freshmen while coming in for help themselves in calculus and which has become a central gathering place for mathematics majors throughout their studies. Helpful material for training undergraduates to be effective course assistants is available on the web page for the PeerLed Team Learning project. 