1954 Summer Writing Group of the Department of Mathematics, University of Kansas, Universal Mathematics, Part I: Functions and Limits. Lawrence, KS: University of Kansas, Student Union Book Store, 1954.
The first half of the experimental and preliminary general mathematics text for first-year college students produced at the behest of the MAA Committee on the Undergraduate Program (later to become CUPM). The second part is listed below under the name of R.L. Davis.
Bell, Max S., "What does Everyman' Really Need from School Mathematics?" The Mathematics Teacher 67:3 (March, 1974) 196-202. (Reprinted 87:7 (Oct., 1994) 546-551).
This paper answers the question in its title with a list of topics and offers some advice about how the list might be used.
Cheney, Lynn V., 50 hours: A Core Curriculum for College Students. Washington, DC: National Endowment for the Humanities, 1989.
A broad and demanding prescription for general undergraduate education (a "core") that puts more emphasis on mathematics than might have been expected. A few examples are given.
Connolly, Paul, and Vilardi, Teresa, eds., Writing to Learn Mathematics and Sciences. New York: Teachers College Press, Columbia University, 1989.
An excellent collection of essays on the subject.
Committee on Support of Research in the Mathematical Sciences (COSRIMS) of the NRC, The Mathematics Sciences: A Report. Washington, DC: National Academy of Sciences, 1968.
One of the earlier harbingers of problems to come, but not lavish with ideas about what quantitative literacy is or how it should be achieved.
CUPM, A General Curriculum in Mathematics for Colleges. Berkeley, CA:MAA, 1965.
A celebrated and influential attempt to provide a curriculum that would enable a small college mathematics faculty to meet the needs of its various students. It does not definitively confront the quantitative literacy question, but on pp. 25-26 offers some interesting ideas on the general issue.
CUPM Panel, "Minimal Mathematical Competencies for College Graduates." American Mathematical Monthly 89:4 (April 1982) 266-272; reprinted in Lynn Arthur Steen, ed., Reshaping College Mathematics (MAA Notes Number 13). Washington, DC: MAA, 1989, 103-108.
Many of the ideas in this somewhat inconclusive report still have some value. The reprinted version includes a new preface.
Davis, R.L., ed., Universal Mathematics, Part II: Elementary Mathematics of Sets with Applications. Charlottesville, VA: Committee on the Undergraduate Program, 1958.
This is the second part of the experimental and preliminary attempt to provide, under the sponsorship of the MAA Committee on the Undergraduate Program (which evolved into CUPM) a text in mathematics for all "normally" prepared first-year college students. The first part is listed above under "1954 Summer Writing Group..."
Dodd, Anne Wescott, "Insights from a Math Phobic." The Mathematics Teacher 85:4 (1992) 296-298.
On the basis of first- hand experience, the author maintains that "math phobics" can become "math fans," but that nontraditional teaching methods can help.
Duren, W.L., Jr., "CUPM, the History of an Idea." American Mathematical Monthly 74:1, part 2 (January, 1967) 23-37.
An absorbing chronicle of the first few years of CUPM, with information about its antecendents and suggestions for its future.
Educational Testing Service, The Mathematics Report Card: Are We Measuring Up? Princeton, NJ: ETS, 1988.
A gloomy assessment based especially on the immense data resources of the ETS.
Garfunkel, Sol, ed., For All Practical Purposes. San Francisco, etc.: W.H. Freeman, 1988.
A book that cultivates quantitative literacy by reliance on somewhat unorthodox applications. There exist more recent additions and supporting materials (videos, etc.) for this refreshing and widely adopted text.
Goldberg, S., ed. The New Liberal Arts Program: A 1990 Report. New York: Alfred P. Sloan Foundation, 1990.
Information about the nature of the "new liberal arts" program and about activities within it. Supporters of "the new liberal arts," notably the Sloan Foundation, maintain that the mathematical sciences should be treated as important parts of a liberal education in our era.
Harrison, Anna, Entry-Level Undergraduate Courses in Sciences, Mathematics, and Engineering: An Investment in Human Resources. Research Triangle Park, NC: Sigma Xi, The Scientific Research Society, 1990.
A lucid, comprehensive, and even-handed report on a workshop sponsored by the National Science Foundation and the Johnson Foundation.
Joint Committee of the MAA and NCTM, A Source Book of Applications of School Mathematics. Reston, VA: National Council of Teachers of Mathematics, 1980.
Primarily a collection of exemplary problems, this book also contains some useful essays on such matters as the nature of mathematical modelling and the importance of mathematics in everyday life.
Leitzel, James R.C., ed. A Call for Change: Recommendations for the Mathematical Preparation of Teachers of Mathematics. Washington, DC: MAA, 1991.
A report from the MAA Committee on the Mathematical Education of Teachers (COMET).
Madison, Bernard L., and Hart, Therese A., A Challenge of Numbers: People in the Mathematical Sciences. Washington, DC: National Academy Press, 1990.
A compilation and analysis of the data on which the other publications in the NRC series were largely based.
Mathematical Sciences Education Board, Counting on You. Washington, DC: National Academy Press, 1991.
This booklet, written for nonmathematicians such as school board members, parents, administrators, etc., clearly conveys the gist of the recent NRC and MSEB reports, most of which are listed elsewhere in this bibliography.
Mathematical Sciences Education Board, For Good Measure: Principles and Goals for Mathematics Assessment. Washington, DC: National Academy Press, (1992).
This report is based primarily on the National Summit on Mathematics Assessment (April, 1991) and contains both recommendations and generous quotations from educational and political leaders.
NRC, Everybody Counts: A Report to the Nation on the Future of Mathematics Education. Washington, DC: National Academy Press, 1989.
Offered as a "preface" to a series of publications (which have since appeared) from several arms of the NRC, this 114- page report offers a challenging discussion of the state of the whole range of mathematics education in the United States. It includes a 10-page bibliography.
NRC, Moving Beyond Myths: Revitalizing Undergraduate Mathematics. Washington, DC: National Academy Press, 1991.
The "capstone" of the efforts, as they apply to undergraduate mathematics education, leading to NRC reports of the late 1980's and early 1990's. The core of the report is an "action plan" (pages 34-42), which gives us all plenty to do.
NCTM, Curriculum and Evaluation Standards for School Mathematics. Reston, VA: NCTM, 1989.
This document, often called simply the Standards, "contains a set of standards for mathematics curricula in North American schools (K-12) and for evaluating the quality of both the curriculum and student achievement" (preface). It has gained wide influence as a base for mathematics education reform and further discussion.
NCTM, Professional Standards for Teaching Mathematics. Reston, VA: NCTM, 1991.
This complement to the preceding item contains principal sections that propose standards for teaching mathematics, for the evaluation of the teaching of mathematics, for the professional development of teachers of mathematics, and for the support and development of mathematics teachers and teaching. [A second volume complementary to the Standards, tentatively titled Assessment Standards for School Mathematics, is in preparation.]
Resnick, Lauren. "Treating Mathematics as an Ill-structured Discipline." In Charles, R., and Silver, E., eds., The Teaching and Assessing of Mathematical Problem Solving, Reston, VA: NCTM, 1989.
An essay on the advantages of not treating mathematics as a subject in which everything, including the nature of the subject itself, is settled.
Schoenfeld, Alan, ed. A Source Book for College Mathematics Teaching. Washington, DC: MAA, 1990.
An 80-page collection of useful advice, based primarily on the work of the MAA Committee on the Teaching of Undergraduate Mathematics (CTUM).
Schoenfeld, Alan H., "Learning to Think Mathematically: Problem Solving, Metacognition, and Sense Making in Mathematics." In Grouws, Douglas A., ed., Handbook of Research on Mathematics Teaching and Learning, New York: Macmillan, 1992, 334-370.
This extensive article deals with: what it means to think mathematically; the pertinent literature; and possible directions for future research on the issues. It is an excellent introduction to the field and background for further reading.
Shavelson, R., et al. "Teaching Mathematical Problem Solving: Insights from Teachers and Tutors." In Charles, R., and Silver, E., The Teaching and Assessing of Mathematical Problem Solving, Reston, VA: NCTM, 1989.
Sons, Linda R., "Reaching for Quantitative Literacy." In Lynn Arthur Steen, ed., Heeding the Call for Change (MAA Notes Number 22), Washington, DC: MAA, 1992, 95-118.
To a large extent this is a report on an e-mail focus group discussion conducted in the spring of 1991 and anticipates the present report in several ways.
Steen, Lynn Arthur, "Reaching for Science Literacy." Change 23:4 (July/August, 1991) 10-19.
This lead article in a theme issue of a journal devoted to higher education in general paints a bleak picture of lower division teaching in the sciences and mathematics, but offers some encouraging examples of what can be done.
Sterrett, Andrew, Using Writing to Teach Mathematics (MAA Notes Number 16). Washington, DC: MAA, 1990.
Thirty-one chapters, mostly reporting on actual experiences with writing as a device for learning mathematics. Full of excellent ideas.
Tobias, Sheila, They're Not Dumb, They're Different: Stalking the Second Tier. Tucson, AZ: Research Corporation, 1990.
An "occasional paper" on why some students do not do so well in science.
Tobias, S., and Weissbroad, C. "Anxiety and Math: An Update." Harvard Educational Review 50 (1980) 63-70.
One of several progress reports on activities aimed at reducing "math anxiety."
Tufte, Edward R., The Visual Display of Quantitative Information. Cheshire, CT: Graphics Press, 1983.
A marvelous book-length essay on the methods for the graphic presentation of quantitative information.
Webb, Norman L., ed. Assessment in the Mathematics Classroom (1993 Yearbook). Reston, VA: NCTM, 1993.
This well-organized collection of essays is concerned almost entirely with the precollege curriculum, and deals with the assessment much more of students than of courses or programs, but will be useful to anyone who wants to assess quantitative literacy.
Wolfe, Christopher R. "Quantitative Reasoning Across a College Curriculum." College Teaching 41:1 (Winter 1993) 3-9.
Using concrete examples from his own experience as a professor of interdisciplinary studies, the author argues for the activity described in his title and sketches some of the possibilities.