You are here

A Graph Theoretic Summation of the Cubes of the First \(n\) Integers

by Joe DeMaio (Kennesaw State University) and Andy Lightcap (Kennesaw State University)

This article originally appeared in:
Mathematics Magazine
December, 2009

Subject classification(s): Number Theory | Algebra and Number Theory
Applicable Course(s): 4.3 Number Theory

A combinatorial proof of the sum of the cubes of the first \(n\) integers is presented, by counting edges in complete bipartite graphs.

A pdf copy of the article can be viewed by clicking below. Since the copy is a faithful reproduction of the actual journal pages, the article may not begin at the top of the first page.

To open this file please click here.

These pdf files are furnished by JSTOR.

Classroom Capsules would not be possible without the contribution of JSTOR.

JSTOR provides online access to pdf copies of 512 journals, including all three print journals of the Mathematical Association of America: The American Mathematical Monthly, College Mathematics Journal, and Mathematics Magazine. We are grateful for JSTOR's cooperation in providing the pdf pages that we are using for Classroom Capsules.

Capsule Course Topic(s):
Number Theory | Numbers With Special Forms or Properties, Sums of Powers
Average: 3 (5 votes)

Dummy View - NOT TO BE DELETED