You are here

Groups Formed from \(2\times 2\) Matrices over \(Z_p\)

by Gregor Olšavský (Pennsylvania State University)

This article originally appeared in:
Mathematics Magazine
October, 1990

Subject classification(s): Algebra and Number Theory | Abstract Algebra
Applicable Course(s): 4.2 Mod Algebra I & II | 4.13 Advanced Linear Algebra

The author provides, with derivations, a list of common groups (subgroups) associated to the \(2\times 2\) matrices over \(Z_{p}\) either additively or multiplicatively.

A pdf copy of the article can be viewed by clicking below. Since the copy is a faithful reproduction of the actual journal pages, the article may not begin at the top of the first page.

To open this file please click here.

These pdf files are furnished by JSTOR.

Classroom Capsules would not be possible without the contribution of JSTOR.

JSTOR provides online access to pdf copies of 512 journals, including all three print journals of the Mathematical Association of America: The American Mathematical Monthly, College Mathematics Journal, and Mathematics Magazine. We are grateful for JSTOR's cooperation in providing the pdf pages that we are using for Classroom Capsules.

Average: 3 (38 votes)