You are here

A Comprehensive Introduction to Differential Geometry, Vol. IV

Michael Spivak
Publisher: 
Publish or Perish, Inc.
Publication Date: 
1999
Number of Pages: 
390
Format: 
Hardcover
Edition: 
3
Price: 
45.00
ISBN: 
091409873X
Category: 
Textbook
BLL Rating: 

The Basic Library List Committee strongly recommends this book for acquisition by undergraduate mathematics libraries.

[Reviewed by
Fernando Q. Gouvêa
, on
03/27/2006
]

 7. Higher Dimensions and Codimensions
        A. THE GEOMETRY OF CONSTANT CURVATURE MANIFOLDS  
            The standard models of the spheres and hyperbolic spaces.
            Stereographic projection and the conformal model of hyperbolic space.
            Conformal maps of Euclidean n-space and the isometries of
            hyperbolic space. Totally geodesic submanifolds and geodesic spheres 
            of hyperbolic space. Horospheres and equidistant hypersurfaces.
            Geodesic mappings; the projective model of hyperbolic space;
            Beltrami's theorem.

        B. CURVES IN A RIEMANNIAN MANIFOLD 
            Frenet frames and curvatures. Curves whose jth curvature vanishes.
        C. THE FUNDAMENTAL EQUATIONS FOR SUBMANIFOLDS
            The normal connection and the Weingarten equations. Second
            fundamental forms and normal fundamental forms; the Codazzi-Mainardi
            equations. The Ricci equations. The fundamental theorem for submanifolds
            of Euclidean space. The fundamental theorem for submanifolds of constant
            curvature manifolds.

        D. FIRST CONSEQUENCES
            The curvatures of a hypersurface; Theorema Egregium; formula for the
            Gaussian curvature. The mean curvature normal; umbilics; all-umbilic
            submanifolds of Euclidean space. All-umbilic submanifolds of constant
            curvature manifolds. Positive curvature and convexity.

        E. FURTHER RESULTS
            Flat ruled surfaces in Euclidean space. Flat ruled surfaces in constant
            curvature manifolds. Curves on hypersurfaces.

        F. COMPLETE SURFACES OF CONSTANT CURVATURE
            Modifications of results for surfaces in Euclidean 3-space. Surfaces of| 
            constant curvature in the 3-sphere: surfaces with constant curvature 0;
            the Hopf map. Surfaces of constant curvature in hyperbolic 3-space:
            Jörgens theorem; surfaces of constant curvature 0; surfaces of constant
            curvature -1; rotation surfaces of constant curvature between -1 and 0.

        G. HYPERSURFACES OF CONSTANT CURVATURE IN HIGHER DIMENSIONS
            Hypersurfaces of constant curvature in dimensions >3. The Ricci tensor;
            Einstein spaces, hypersurfaces which are Einstein spaces. Hypersurfaces
            of the same constant curvature as the ambient manifold. 
            Addenda. The Laplacian.
            The * operator and the Laplacian on forms; Hodge's theorem.
            When are two Riemannian manifolds isometric? Better imbedding invariants.

 8. The Second Variation
        Two-parameter variations; the second variation formula. Jacobi fields; 
        conjugate points. Minimizing and non-minimizing geodesics. 
        The Hadamard-Cartan Theorem. The Sturm Comparison Theorem; 
        Bonnet's Theorem. Generalizations to higher dimensions; the
        Morse-Schoenberg Comparison Theorem; Meyer's Theorem; the
        Rauch Comparison Theorem. Synge's lemma; Synge's Theorem. 
        Cut points; Klingenberg's theorem.

 9.  Variations of Length, Area, and Volume
        Variation of are for normal variations of surfaces in Euclidean 3-space; 
        minimal surfaces. Isothermal coordinates on minimal surfaces:
        Bernstein's Theorem. Weierstrass-Enneper representation. Associated
        minimal surfaces; Schwarz's Theorem. Change of orientation;
        Henneberg's minimal surface. Classical calculus of variations in n dimensions.
        Variation of volume formula. Isoperimetric problems. Isothermal coordinates.
        Immersed spheres with constant mean curvature. Imbedded surfaces with
        constant mean curvature. The second variation of volume.

Dummy View - NOT TO BE DELETED