You are here

Bayesian Inference for Gene Expression and Proteomics

Cambridge University Press
Number of Pages: 
Date Received: 
Tuesday, April 10, 2007
Include In BLL Rating: 
Reviewer Email Address: 
Kim-Anh Do, Peter Müller, Marina Vannucci, editors
Publication Date: 

 1. An introduction to high-throughput bioinformatics data Keith Baggerly, Kevin Coombes and Jeffrey S. Morris; 2. Hierarchical mixture models for expression profiles Michael Newton, Ping Wang and Christina Kendziorski; 3. Bayesian hierarchical models for inference in microarray data Anne-Mette K. Hein, Alex Lewin and Sylvia Richardson; 4. Bayesian process-based modeling of two-channel microarray experiments estimating absolute mRNA concentrations Mark A. van de Wiel, Marit Holden, Ingrid K. Glad, Heidi Lyng and Arnoldo Frigessi; 5. Identification of biomarkers in classification and clustering of high-throughput data Mahlet Tadesse, Marina Vannucci, Naijun Sha and Sinae Kim; 6. Modeling nonlinear gene interactions using Bayesian MARS Veerabhadran Baladandayuthapani Chris C. Holmes, Bani K. Mallick and Raymond J. Carroll; 7. Models for probability of under- and overexpression: the POE scale Elizabeth Garrett-Mayer and Robert Scharpf; 8. Sparse statistical modelling in gene expression genomics Joseph Lucas, Carlos Carvalho, Quanli Wang, Andrea Bild, Joseph Nevins and Mike West; 9. Bayesian analysis of cell-cycle gene expression Chuan Zhou, Jon Wakefield and Linda L. Breeden; 10. Model-based clustering for expression data via a Dirichlet process mixture model David Dahl; 11. Interval mapping for Expression Quantitative Trait Loci mapping Meng Chen and Christina Kendziorski; 12. Bayesian mixture model for gene expression and protein profiles Michele Guindani, Kim-Anh Do, Peter Müller and Jeffrey S. Morris; 13. Shrinkage estimation for SAGE data using a mixture Dirichlet prior Jeffrey S. Morris, Kevin Coombes and Keith Baggerly; 14. Analysis of mass spectrometry data using Bayesian wavelet-based functional mixed models Jeffrey S. Morris, Philip J. Brown, Keith Baggerly and Kevin Coombes; 15. Nonparametric models for proteomic peak identification and quantification Merlise Clyde, Leanna House and Robert Wolpert; 16. Bayesian modeling and inference for sequence motif discovery Mayetri Gupta and Jun S. Liu; 17. Identifying of DNA regulatory motifs and regulators by integrating gene expression and sequence data Deuk Woo Kwon, Sinae Kim, David Dahl, Michael Swartz, Mahlet Tadesse and Marina Vannucci; 18. A misclassification model for inferring transcriptional regulatory networks Ning Sun and Hongyu Zhao; 19. Estimating cellular signaling from transcription data Andrew V. Kossenkov, Ghislain Bidaut and Michael Ochs; 20. Computational methods for learning Bayesian networks from high-throughput biological data Bradley Broom and Devika Subramanian; 21. Modeling transcriptional regulation: Bayesian networks and informative priors Alexander J. Hartemink; 22. Sample size choice for microarray experiments Peter Müller, Christian Robert and Judith Rousseau.

Publish Book: 
Modify Date: 
Tuesday, April 10, 2007