You are here

Introduction to Singularities and Deformations

G.-M. Greuel, C. Lossen, and E. Shustin
Publisher: 
Springer Verlag
Publication Date: 
2007
Number of Pages: 
471
Format: 
Hardcover
Series: 
Springer Monographs in Mathematics
Price: 
99.00
ISBN: 
9783540283805
Category: 
Monograph
We do not plan to review this book.

I. Singularity Theory.- Basic Properties of Complex Spaces and Germs.- Weierstrass Preparation and Finiteness Theorem.- Application to Analytic Algebras.- Complex Spaces.- Complex Space Germs and Singularities.- Finite Morphisms and Finite Coherence Theorem.- Applications of the Finite Coherence Theorem.- Finite Morphisms and Flatness.- Flat Morphisms and Fibres.- Singular Locus and Differential Forms.- Hypersurface Singularities.- Invariants of Hypersurface Singularities.- Finite Determinacy.- Algebraic Group Actions.- Classification of Simple Singularities.- Plane Curve Singularities.- Parametrization.- Intersection Multiplicity.- Resolution of Plane Curve Singularities.- Classical Topological and Analytic Invariants

II. Local Deformation Theory.- Deformations of Complex Space Germs.- Deformations of Singularities.- Embedded Deformations.- Versal Deformations.- Infinitesimal Deformations.- Obstructions.- Equisingular Deformations of Plane Curve Singularities.- Equisingular Deformations of the Equation.- The Equisingularity Ideal.- Deformations of the Parametrization.- Computation of T^1 and T^2 .- Equisingular Deformations of the Parametrization.- Equinormalizable Deformations.- Versal Equisingular Deformations.-Appendices: Sheaves.- Commutative Algebra.- Formal Deformation Theory.- Literature.- Index

Dummy View - NOT TO BE DELETED