- Membership
- MAA Press
- Meetings
- Competitions
- Community
- Programs
- Students
- High School Teachers
- Faculty and Departments
- Underrepresented Groups
- MAA Awards
- MAA Grants

- News
- About MAA

Publisher:

Dover Publications

Publication Date:

2008

Number of Pages:

574

Format:

Paperback

Price:

29.95

ISBN:

9780486468983

Category:

Textbook

The Basic Library List Committee suggests that undergraduate mathematics libraries consider this book for acquisition.

[Reviewed by , on ]

Mark Bollman

10/12/2010

I like a book that is what it says it is, and *Logic for Mathematicians* fits that description. This is an immersion into pure logic for non-specialists, and it succeeds in its declared goal.

Those who are fascinated by dense mathematical notation will be cheered by this book. Rosser has made a conscious decision to use symbolic logic, “because we do not know otherwise to attain the desired precision” (p. vii). This reasonable decision leads to such compact expressions as

(A,γ)(α,β):α || γ on α.β || γ.A on β. ⊃ .α = β

for the parallel postulate (p. 177). While there is certainly a case to be made for the clear exposition of language, it is at times fascinating to see the economy of notation in the symbolic logic version of common mathematical statements.

As mathematicians, we occasionally find ourselves defending our subject for its logical clarity, yet many of us have not studied logic formally. Rosser’s book is a comprehensive introduction to logic and very suitable for self-study. If you are interested in sharpening your logic skills and not afraid of some dense mathematical sentences, this is a fine book for that purpose.

Mark Bollman (mbollman@albion.edu) is associate professor of mathematics and chair of the department of mathematics and computer science at Albion College in Michigan. His mathematical interests include number theory, probability, and geometry. His claim to be the only Project NExT fellow (Forest dot, 2002) who has taught both English composition and organic chemistry to college students has not, to his knowledge, been successfully contradicted. If it ever is, he is sure that his experience teaching introductory geology will break the deadlock.

Preface | |||||||

List of Symbols | |||||||

1. What Is Symbolic Logic? | |||||||

2. The Statement Calculus | |||||||

3. The use of Names | |||||||

4. Axiomatic Treatment of the Statement Calculus | |||||||

5. Clarification | |||||||

6. The Restricted Predicate Calculus | |||||||

7. Equality | |||||||

8. Descriptions | |||||||

9. Class Membership | |||||||

10. Relations and Functions | |||||||

11. Cardinal Numbers | |||||||

12. Ordinal Numbers | |||||||

13. Counting | |||||||

14. The Axiom of Choice | |||||||

15. We Rest Our Case | |||||||

A Proof of the Axiom of Infinity | |||||||

The Axiom of Counting | |||||||

The Axiom of Choice | |||||||

Nonstandard Analysis | |||||||

Bibliography | |||||||

Index |

- Log in to post comments