You are here

Mathematical Developments Arising from Hilbert Problems

Felix E. Bowder
Publisher: 
American Mathematical Society
Publication Date: 
1983
Number of Pages: 
628
Format: 
Paperback
Series: 
Proceedings of Symposia in Pure Mathematics 28
Price: 
47.00
ISBN: 
0-8218-1428-1
Category: 
General
We do not plan to review this book.

Part 1

  • D. A. Martin -- Hilbert's first problem: The continuum hypothesis
  • G. Kreisel -- What have we learnt from Hilbert's second problem?
  • H. Busemann -- Problem IV: Desarguesian spaces
  • C. T. Yang -- Hilbert's fifth problem and related problems on transformation groups
  • A. S. Wightman -- Hilbert's sixth problem: Mathematical treatment of the axioms of physics
  • R. Tijdeman -- Hilbert's seventh problem: On the Gel'fond-Baker method and its applications
  • E. Bombieri -- Hilbert's 8th problem: An analogue
  • N. M. Katz -- An overview of Deligne's proof of the Riemann hypothesis for varieties over finite fields (Hilbert's problem 8)
  • H. L. Montgomery -- Problems concerning prime numbers (Hilbert's problem 8)

Part2

  • J. Tate -- Problem 9: The general reciprocity law
  • M. Davis, Y. Matijasevic, and J. Robinson -- Hilbert's tenth problem. Diophantine equations: Positive aspects of a negative solution
  • O. T. O'Meara -- Hilbert's eleventh problem: The arithmetic theory of quadratic forms
  • R. P. Langlands -- Some contemporary problems with origins in the Jugendtraum (Hilbert's problem 12)
  • G. G. Lorentz -- The 13-th problem of Hilbert
  • D. Mumford -- Hilbert's fourteenth problem--the finite generation of subrings such as rings of invariants
  • S. L. Kleiman -- Problem 15. Rigorous foundation of Schubert's enumerative calculus
  • A. Pfister -- Hilbert's seventeenth problem and related problems on definite forms
  • J. Milnor -- Hilbert's problem 18: On crystalographic groups, fundamental domains, and on sphere packing
  • J. Serrin -- The solvability of boundary value problems (Hilbert's problem 19)
  • E. Bombieri -- Variational problems and elliptic equations (Hilbert's problem 20)
  • N. M. Katz -- An overview of Deligne's work on Hilbert's twenty-first problem
  • G. Stampacchia -- Hilbert's twenty-third problem: Extensions of the calculus of variations

Dummy View - NOT TO BE DELETED