You are here

Number Fields and Function Fields - Two Parallel Worlds

Publisher: 
Birkhäuser
Number of Pages: 
318
Price: 
89.95
ISBN: 
0-8176-4397-4
Date Received: 
Saturday, September 17, 2005
Reviewable: 
No
Include In BLL Rating: 
No
Reviewer Email Address: 
Gerard van der Geer, Ben Moonen, Ren&eacute Schoof, editors
Series: 
Progress in Mathematics 239
Publication Date: 
2005
Format: 
Hardcover
Category: 
Proceedings

 

* Preface

* Participants

* List of Contributors

* G. Böckle: Arithmetic over Function Fields: A Cohomological Approach

* T. van den Bogaart and B. Edixhoven: Algebraic Stacks Whose Number of Points over Finite Fields Is a Polynomial

* H. Brenner: On a Problem of Miyaoka

* F. Breuer and R. Pink: Monodromy Groups Associated to Nonisotrivial Drinfeld Modules in Generic Characteristic

* K. Conrad: Irreducible Values of Polynomials: A Nonanalogy

* A. Deitmar: Schemes over F1

* C. Deninger and A. Werner: Line Bundles and p-Adic Characters

* G. Faltings: Arithmetic Eisenstein Classes on the Siegel Space: Some Computations

* U. Hartl: Uniformizing the Stacks of Abelian Sheaves

* R. de Jong: Faltings’ Delta-Invariant of a Hyperelliptic Riemann Surface

* K. Köhler: A Hirzebruch Proportionality Principle in Arakelov Geometry

* U. Kühn: On the Height Conjecture for Algebraic Points on Curves Defined over Number Fields

* J.C. Lagarias: A Note on Absolute Derivations and Zeta Functions

* V. Maillot and D. Roessler: On the Order of Certain Characteristic Classes of the Hodge Bundle of Semiabelian Schemes

* D. Roessler: A Note on the Manin–Mumford Conjecture


Publish Book: 
Modify Date: 
Wednesday, October 19, 2005

Dummy View - NOT TO BE DELETED