You are here

Spectral Theory of Inifinite-Area Hyperbolic Surfaces

David Borthwick
Publisher: 
Birkhäuser
Publication Date: 
2008
Number of Pages: 
355
Format: 
Paperback
Series: 
Progress in Mathematics 256
Price: 
59.95
ISBN: 
978-0-8176-4524-3
Category: 
Monograph
We do not plan to review this book.

Preface.- Hyperbolic surfaces.- Geometry of H.- Fuchsian groups.- Geometric finiteness.- Classification of hyperbolic ends.- Length spectrum and Selberg’s zeta function.- Review of the Compact Case.- Spectral theory for compact manifolds.- Selberg’s trace formula for compact surfaces.- Consequences of the trace formula.- Review of the finite-volume case.- Finite-volume hyperbolic surfaces.- Spectral theory.- Selberg’s trace formula.- Scattering Theory in Model Cases.- Spectral theory of H.- Scattering theory on H.- Hyperbolic cylinders.- Funnels.- Parabolic cylinder.- Scattering Theory for infinite-volume hyperbolic surfaces.- Compactification.- Continuation of the resolvent.- Resolvent asymptotics and the stretched product.- Structure of the resolvent kernel.- Discrete and continuous spectrum.- Generalized eigenfunctions.- Scattering matrix.- Structure of kernels in the conformally compact case.- Resonances and scattering poles.- Multiplicities of resonances.- Scattering poles.- Half-integer points.- Coincidence of resonances and scattering poles.- Upper bound on the density of resonances.- Infinite-volume spectral geometry.- Relative scattering determinant.- Regularized traces.- The resolvent 0-trace calculation.- Structure of Selberg’s zeta function.- The Poisson formula for resonances.- Application.- Lower bounds on the density.- Weyl formula for the scattering phase.- The length spectrum.- Finiteness of isospectral classes.- Appendix A Functional analysis.- Basic spectral theory.- Analytic Fredholm theorem.- Operator residues and multiplicities.- Appendix B Asymptotic expansions.- References.- Index.

Dummy View - NOT TO BE DELETED