Preface.- Historical Introduction: Issai Schur and the Early Development of the Schur Complement.- Basic Properties of the Schur Complement.- Eigenvalue and Singular Value Inequalities of Schur Complements.- Block Matrix Techniques.- Closure Properties.- Schur Complements and Matrix Inequalities: Operator-Theoretic Approach.- Schur Complements in Statistics and Probability.- Schur Complements and Applications in Numerical Analysis.- Bibliography.- Notation.- Index.