Publisher:

Société Mathématique de France; distributed by the AMS

Number of Pages:

261

Price:

37.00

ISBN:

2-85629-164-3

When I was in graduate school, it sometimes seemed as if one couldn't refer to motives without using the phrase "Grothendieck's conjectural theory of motives." As Yves André's *Une Introduction Aux Motifs* shows, things have changed.

Grothendieck's vision, 40 years ago, was that the arithmetic properties of algebraic varieties suggested the existence of some sort of underlying object, which he termed a "motive" (or, perhaps, a "motif", as in music or literature). The study of cohomological properties of varieties suggested common themes, motifs that ran through the theory (for example, the notion of "weight"). At the same time, common properties of very different cohomological theories seemed to call for an explanation, a motive. At first this was only a conjecture, but over the last fifteen years the theory has taken shape and become an important part of Arithmetical Algebraic Geometry.

Grothendieck's punning choice of name seems to have inspired his followers. There are "pure motives" and "mixed motives". I understand that someone once wrote a paper with the sole purpose of defining "ulterior motives".

André's book is an introduction to the theory aimed at "non-specialists" (meaning roughly, I think, specialists in arithmetical algebraic geometry who don't yet know about motives). Its first two sections discuss pure motives and mixed motives, respectively, and the third section puts the theory to work in an interesting way by studying periods of motives and their connection to polyzeta functions. Each of the first two parts is preceded by a motivational chapter that, though still not easy, tries to show why the theory to be developed is necessary. All in all, a valuable contribution to the literature.

Fernando Q. Gouvêa is a number theorist and historian of mathematics; he teaches at Colby College in Waterville, ME.

Date Received:

Tuesday, March 1, 2005

Reviewable:

Yes

Series:

Panoramas et Synthèses 17

Publication Date:

2004

Format:

Paperback

Audience:

Category:

Monograph

Fernando Q. Gouvêa

01/20/2001

Partie I. Motifs purs

* Sources: gâ€šomâ€štrie â€šnumâ€šrative, cohomologie, thâ€šorie de Galois

* $\otimes$-Catâ€šgories rigides, catâ€šgories tannakiennes

* Cycles algâ€šbriques et cohomologies (cas des variâ€štâ€šs projectives lisses)

* Motifs purs de Grothendieck

* Les conjectures standard

* Groupes de Galois motiviques

* Les conjectures de plâ€šnitude et de semi-simplicitâ€š des râ€šalisations enrichies

* Effectivitâ€š

* Comment contourner les conjectures standard

* Applications de la thâ€šorie des cycles motivâ€šs

* Filtrations sur les anneaux de Chow et nilpotence

* Structure de la catâ€šgorie des motifs purs pour une â€šquivalence adâ€šquate quelconque

* Motifs purs virtuels attachâ€šs aux $k$-variâ€štâ€šs (transition vers la mixitâ€š)

Partie II. Motifs mixtes

* Pourquoi des motifs mixtes?

* Le formalisme â€šlâ€šmentaire des morphismes multivaluâ€šs

* Motifs mixtes de Voevodsky

* Twists et cohomologie motivique

* Propriâ€štâ€šs fondamentales de $DM_{\mathrm{gm}}(k)$

* Complexes de faisceaux motiviques

* Exemples: 1-motifs et motifs de Tate mixtes

* Vers le coeur de $DM_{\mathrm{gm}}(k)$

* Râ€šalisations mixtes et râ€šgulateurs

Partie III. Pâ€šriodes

* Relations de pâ€šriodes

* Motifs et valeurs spâ€šciales de la fonction $\Gamma$

* Motifs et nombres polyzË†ta

* Bibliographie

* Index terminologique

* Sources: gâ€šomâ€štrie â€šnumâ€šrative, cohomologie, thâ€šorie de Galois

* $\otimes$-Catâ€šgories rigides, catâ€šgories tannakiennes

* Cycles algâ€šbriques et cohomologies (cas des variâ€štâ€šs projectives lisses)

* Motifs purs de Grothendieck

* Les conjectures standard

* Groupes de Galois motiviques

* Les conjectures de plâ€šnitude et de semi-simplicitâ€š des râ€šalisations enrichies

* Effectivitâ€š

* Comment contourner les conjectures standard

* Applications de la thâ€šorie des cycles motivâ€šs

* Filtrations sur les anneaux de Chow et nilpotence

* Structure de la catâ€šgorie des motifs purs pour une â€šquivalence adâ€šquate quelconque

* Motifs purs virtuels attachâ€šs aux $k$-variâ€štâ€šs (transition vers la mixitâ€š)

Partie II. Motifs mixtes

* Pourquoi des motifs mixtes?

* Le formalisme â€šlâ€šmentaire des morphismes multivaluâ€šs

* Motifs mixtes de Voevodsky

* Twists et cohomologie motivique

* Propriâ€štâ€šs fondamentales de $DM_{\mathrm{gm}}(k)$

* Complexes de faisceaux motiviques

* Exemples: 1-motifs et motifs de Tate mixtes

* Vers le coeur de $DM_{\mathrm{gm}}(k)$

* Râ€šalisations mixtes et râ€šgulateurs

Partie III. Pâ€šriodes

* Relations de pâ€šriodes

* Motifs et valeurs spâ€šciales de la fonction $\Gamma$

* Motifs et nombres polyzË†ta

* Bibliographie

* Index terminologique

Publish Book:

Modify Date:

Saturday, October 22, 2005

- Log in to post comments