*The author presents three solutions to a problem concerning...*

**Symmetrically Bordered Surfaces**

By: William Cavendish and John H. Conway

wcavendi@math.princeton.edu, jhorcon@yahoo.com

We address the question: given a compact topological surface with boundary, when can it be symmetrically embedded in We construct examples of symmetric embeddings for compact surfaces with an odd number of boundary components, and connected sums of an even number of â„â„™^{2} ’s (cross surfaces) with any number of boundary components. We show in the appendix that a connected sum of an odd number of â„â„™^{2} ’s with 4*n* boundaries cannot be symmetrically embedded.

**Stern's Diatomic Sequence 0, 1, 1, 2, 1, 3, 2, 3, 1, 4, Â…**

By: Sam Northshield

northssw@plattsburgh.edu

Stern’s diatomic sequence is a simply defined sequence with an amazing set of properties. It appeared in print in 1858 and has been the subject of numerous papers since. Our goal is to present many of these properties, both old and new. We present a large set of references and, for many properties, we supply simple proofs or ones that complement existing proofs. Among the topics covered are what these numbers count (hyperbinary representations) and the sequence’s surprising parallels with the Fibonacci numbers. Quotients of consecutive terms lead to an enumeration of the rationals. Other quotients lead to a map from dyadic rationals to the rationals whose completion is the inverse of Minkowski’s ? function. Along the way, we get a distant view of fractals and the Riemann hypothesis as well as foray into random walks on graphs in the hyperbolic plane.

**Dispersive Quantization**

By: Peter J. Oliver

olver@math.umn.edu

The evolution, through linear dispersion, of piecewise constant periodic initial data leads to surprising quantized structures at rational times, and fractal, nondifferentiable profiles at irrational times. Similar phenomena have been observed in optics and quantum mechanics, and lead to intriguing connections with exponential sums arising in number theory. Ramifications of these observations for numerics and nonlinear dispersion are proposed as open problems.

**A Fancy Way to Obtain the Binary Digits of 759250125 **

By: Thomas Stoll

tstoll@cs.uwaterloo.ca

R. L. Graham and H. O. Pollak observed that the sequence

**Wallis-Ramanujan-Schur-Feynman**

By: T. Amdeberhan, O. R. Espinosa, V. H. Moll, and A. Straub

tamdeberhan@math.tulane.edu, olivier.espinosa@usm.cl, vhm@math.tulane.edu, astraub@math.tulane.edu

One of the earliest examples of analytic representations for is given by an infinite product provided by Wallis in 1655. The modern literature often presents this evaluation based on the integral formula

In trying to understand the behavior of this integral when the integrand is replaced by the inverse of a product of distinct quadratic factors, the authors encounter relations to some formulas of Ramanujan, expressions involving Schur functions, and Matsubara sums that have appeared in the context of Feynman diagrams.

**Notes**

**On Cantor's First Uncountability Proof, Pick’s Theorem, and the Irrationality of the Golden Ratio**

By: Mike Krebs and Thomas Wright

mkrebs@calstatela.edu, wright@math.jhu.edu

In Cantor’s original proof of the uncountability of the reals (not the diagonalization argument), he constructs, given any countable sequence of real numbers, a real number not in the sequence. When we apply this argument to a certain standard enumeration of the rationals, the real number we produce will necessarily be irrational. Using some planar geometry, including Pick’s theorem on the number of lattice points enclosed within certain polygonal regions, we show that this number is the reciprocal of the golden ratio, whence follows the well-known fact that the golden ratio is irrational.

**The Diophantine Equation in Gaussian Integers**

By: Filip Najman

fnajman@math.hr

In this note we find all the solutions of the Diophantine equation using elliptic curves over â„š (*i*) . Also, using the same method we give a new proof of Hilbert's result that the equation has only trivial solutions in Gaussian integers.

**Polynomial Root Motion**

By: Christopher Frayer and James A. Swenson

frayerc@uwplatt.edu, swensonj@uwplatt.edu

A polynomial is determined by its roots and its leading coefficient. If you set the roots in motion, the critical points will move too. Using only tools from the undergraduate curriculum, we find an inverse square law that determines the velocities of the critical points in terms of the positions and velocities of the roots. As corollaries we get the Polynomial Root Dragging Theorem and the Polynomial Root Squeezing Theorem.

**From Enmity to Amity**

By: Aviezri S. Fraenkel

fraenkel@wisdom.weizmann.ac.il

Sloane’s influential On-Line Encyclopedia of Integer Sequences is an indispensable research tool in the service of the mathematical community. The sequence A001611 listing the "Fibonacci numbers + 1" contains a very large number of references and links. The sequence A000071 for the "Fibonacci numbers 1" contains an even larger number. Strangely, resentment seems to prevail between the two sequences; they do not acknowledge each other’s existence, though both stem from the Fibonacci numbers. Using an elegant result of Kimberling, we prove a theorem that links the two sequences amicably. We relate the theorem to a result about iterations of the floor function, which introduces a new game.

**Reviews**

*Finite Group Theory*

By: I. Martin Isaacs

Reviewed by: Peter Sin

sin@math.ufl.edu