You are here

Problems from Another Time

Individual problems from throughout mathematics history, as well as articles that include problem sets for students.

A leech invited a slug for a lunch a leuca away.
Seven men held equal shares in a grinding stone 5 feet in diameter. What part of the diameter should each grind away?
Given a pyramid 300 cubits high, with a square base 500 cubits to a side, determine the distance from the center of any side to the apex.
Chuquet claimed that if given positive numbers a, b, c, d then (a + b) / (c + d) lies between a/c and b/d. Is he correct? Prove your answer
Determine a number having remainders 2, 3, 2 when divided by 3, 5, 7 respectively.
In a rectangle, having given the diagonal and perimeter, find the sides
Given two circles tangent to each other and to a common line, determine a relationship between the radii and the distance between the tangent points.
The authors recount the 'great tale' of Napier's and Burgi's parallel development of logarithms and urge you to use it in class.
Two travelers, starting at the same time from the same point, travel in opposite directions round a circular railway.
A set of four congruent circles whose centers form a square is inscribed in a right triangle ABC where C is the right angle and serves as one corner of the square. Find their radius in terms of the sides; a,b,c, of the triangle.

Pages

Dummy View - NOT TO BE DELETED