You are here

Problems from Another Time

Individual problems from throughout mathematics history, as well as articles that include problem sets for students.

A mouse is at the top of a poplar tree 60 braccia high, and a cat is on the ground at its foot. The mouse decends 1/2 a braccia a day and at night it turns back 1/6 of a braccia.
My age is a number consisting of two digits, 1/2 of this number is a mean proportional between these two digits, and two years hence, my age will be a third proportional to the same two digits, directly as they stand in my present age.
Thirty flasks-10 full, 10 half-empty, and 10 completely empty- are to be divided among 3 sons so that flasks and contents should be shared equally. How may this be done?
Prove geometrically that the hypocycloid is a straight line when the radius of the rolling circle is one-half the radius of the fixed circle.
The third part of a necklace of pearls, broken in a lover's quarrel, fell to the ground...
There are four companies, in one of which there are 6 men, in another 8, and in each of the remaining two, 9 men. How many ways can a committee of 4 men be composed by choosing one man from each company?
Given a rectangle, find the line through one vertex of minimum length that passes through the extensions of the two opposite sides.
Given the fraction ax/ (a-x ), convert it into an infinite series.
A two door gate of unknown width is opened so that a 2 inch gap exists between the two doors.
There is a right triangle where: the sum of the upright multiplied by itself twice and the hypotenuse multiplied by itself is 700 units; and, the sum of the base multiplied by itself twice and the hypotenuse multiplied by itself is 900 units.