You are here

Problems from Another Time

Individual problems from throughout mathematics history, as well as articles that include problem sets for students.

Of a collection of mango fruits, the king took 1/6; the queen 1/5 the remainder, and the three princes took 1/4, 1/3 and 1/2 (of the same remainder); and the youngest child took the remaining 3 mangoes.
Three vertical posts along a straight canal, each rising to the same height above the surface of the water. By looking at the line of vision, determine, to the nearest mile, the radius of the earth.
How a translation of Peano's counterexample to the 'theorem' that a zero Wronskian implies linear dependence can help your differential equations students
A wooden log is encased in a wall. If we cut part of the wall away to a depth of 1 inch...
Prove that if the sums of the square opposite sides of any quadrilateral are equal, its diagonals interect at right angles.
A powerful, unvanquished, excellent black snake, 80 angulas in length, enters into a hole at the rate of 7 1/2 angulas in 5/14 of a day, and in the course of a day its tail grows 11/4 of an angula.
Determine by using algebra the number of degrees in the angle A where: cos A = tan A
On an expedition to seize his enemy's elephants, a king marched 2 yojanas the first day.
A series of circles have their centers on an equilateral hyperbola and pass through its center. Show that their envelope is a lemniscate.
Given a wooden log of diameter 2 feet 5 inches from which a 7 inch thick board is to be cut, what is the maximum possible width of the board?

Pages

Dummy View - NOT TO BE DELETED