You are here

Problems from Another Time

Individual problems from throughout mathematics history, as well as articles that include problem sets for students.

A round pond sits in a rectangular garden. Its center is inaccessible; however, you know the distances from each corner of the garden to the center of the pond: 60, 52, 28, and 40 yards. What is the radius of the pond?
Show that the curves x2 - y2 = a2 and 2 xy = b2 cross at right angles.
Two men have a certain amount of money. The first says to the second, "If you give me 5 denari, I will have 7 times what you have left."
A circle is inscribed in an isosceles trapezoid. Find the relationship of the radius to the sides.
A carpenter has undertaken to build a house in 20 days. He takes on another man and says; "If we build the house together, we can accomplish the work in 8 days!" How long would it take this other man to build the house working alone?
If I were to give 7 pennies to each beggar at my door, I would have 24 pennies left in my purse. How many beggars are there and how much money do I have?
A horse halving its speed every day runs 700 miles in 7 days.
A fellow said that when he counted his nuts by twos, threes, fours, fives and sixes, there was still one left over; but when he counted them by sevens they came out even. How many did he have?
A general formed his men into a square, that is, an equal number in rank and file, and he found that he had an excess of 59 men.
How a translation of Peano's counterexample to the 'theorem' that a zero Wronskian implies linear dependence can help your differential equations students