You are here

Problems from Another Time

Individual problems from throughout mathematics history, as well as articles that include problem sets for students.

Determine the radii of three equal circles decribed within and tangent to a given circle, and also tangent to each other
The radius of a circle is 3.20 meters. Compute to within .001m the areas of the inscribed and circumscribed equilateral triangles.
The purchase price for an apple and an orange is 100 yen. When n oranges and n + 3 apples are bought the price is 520 yen. Find the number n of oranges and the price of one orange.
Having been given the perimeter and perpendicular of a right angled triangle, it is required to find the triangle.
If in a circle ABDC, circumscribe an equilateral triangle ABC; the straight line AD is equal to the sum of the two straight lines BD and DC: required a demonstration.
A cat sitting on a wall 4 cubits high saw a rat prowling 8 cubits from the foot of the wall;
Determine the dimensions of the least isosceles triangle ACD that can circumscribe a given circle.
Given four numbers whose sum is 9900; the second exceeds the first by 1/7 of the first...
A square circumscribed about a given circle is double in area to a square inscribed in the same circle. True of false? Prove your answer.
Given a guest on horseback rides 300 li in a day. The guest leaves his clothes behind. The host discovers them after 1/3 day, and he starts out with the clothes.

Pages

Dummy View - NOT TO BE DELETED