You are here

Problems from Another Time

Individual problems from throughout mathematics history, as well as articles that include problem sets for students.

Discussion of 15th century French manuscript, with translation of its problems, including one with negative solutions
A round pond sits in a rectangular garden. Its center is inaccessible; however, you know the distances from each corner of the garden to the center of the pond: 60, 52, 28, and 40 yards. What is the radius of the pond?
Having been given the lengths, a and b, of two straight lines drawn from the acute angles of a right triangle to the middle of the opposite sides, determine the length of those sides.
A mouse is at the top of a poplar tree 60 braccia high, and a cat is on the ground at its foot. The mouse decends 1/2 a braccia a day and at night it turns back 1/6 of a braccia.
A set of n disjoint, congruent circles packs the surface of a sphere S so that each region of the surface exterior to the circles is bounded by arcs of three of the circles.
An oracle ordered a prince to build a sacred building, whose space would be 400 cubits, the length being 6 cubits more than the width, and the width 3 cubits more than the height. Find the dimensions of the building.
A railway train strikes a snowdrift which creates a constant resistance. How long does it take the snow to stop the train?
One military horse cannot pull a load of 40 dan; neither can 2 ordinary horses, nor can three inferior horses.
Now a good horse and an inferior horse set out from Chang'an to Qi. Qi is 3000 li from Chang'an.
The steamer, Katie, leaves the wharf at New Orleans and runs an average speed of 15 mph. When Katie had gone 25 miles, the steamer R.E. Lee leaves the wharf and runs the average speed of 18 mph. How far will the Lee go before she overtakes the Katie?

Pages

Dummy View - NOT TO BE DELETED