You are here

Problems from Another Time

Individual problems from throughout mathematics history, as well as articles that include problem sets for students.

Three equal circumferences with radii 6" are tangent to each other. Compute the area enclosed between them.
The authors recount the 'great tale' of Napier's and Burgi's parallel development of logarithms and urge you to use it in class.
Three people buy wood together. One pays the merchant 5 coins, another 3 coins, and the last 2 coins.
A boy gives 11 coins of equal denomination to a man, and the man finds that their total value in yen is 4 less than his age.
There were two men, of whom the first had 3 small loaves of bread and the other, 2.
Discussion of 15th century French manuscript, with translation of its problems, including one with negative solutions
Find two numbers such that multiplying one by the other makes 8 and the sum of their squares is 27.
What proportions of sugar at 8 cents, 10 cents and 14 cents per pound, will compose a mixture worth 12 cents per pound?
Fibonacci gave a practical rule for approximating the area of an equilateral triangle.
Find two numbers, x and y, such that their sum is 10 and x/y + y/x = 25