# Problems from Another Time

Individual problems from throughout mathematics history, as well as articles that include problem sets for students.

A set of n disjoint, congruent circles packs the surface of a sphere S so that each region of the surface exterior to the circles is bounded by arcs of three of the circles.
An oracle ordered a prince to build a sacred building, whose space would be 400 cubits, the length being 6 cubits more than the width, and the width 3 cubits more than the height. Find the dimensions of the building.
The authors recount the 'great tale' of Napier's and Burgi's parallel development of logarithms and urge you to use it in class.
Two travelers, starting at the same time from the same point, travel in opposite directions round a circular railway.
Now a good horse and an inferior horse set out from Chang'an to Qi. Qi is 3000 li from Chang'an.
The steamer, Katie, leaves the wharf at New Orleans and runs an average speed of 15 mph. When Katie had gone 25 miles, the steamer R.E. Lee leaves the wharf and runs the average speed of 18 mph. How far will the Lee go before she overtakes the Katie?
Discussion of 15th century French manuscript, with translation of its problems, including one with negative solutions
A wooden beam is stood vertically against a wall. The length of the beam is 30 units.
A farmer sold a team of horses for $440, but did not receive his pay for them until 1 yr, 8 mo after the sale. He had at the same time another offer of$410 for them. Did he gain or lose by the sale and by how much, money being worth 6%/yr?
There is a lion in a well whose depth is 50 palms. He climbs and slips back a certain amount each day. In how many days will he get out of the well?