You are here

Problems from Another Time

Individual problems from throughout mathematics history, as well as articles that include problem sets for students.

A certain man had in his trade four weights with which he could weigh integral pounds from one up to 40. How many pounds was each weight?
Given a semicircle, Prove that if O is the circle's center, DO=OE.
The perimeters of two similar triangles are 45 and 135 respectively. One side of the first triangle has length 11″ and a second side, 19″. Find the lengths of the sides of the second triangle.
One says that 10 is divided into three parts and if the small part is multiplied by itself and added to the middle one multiplied by itself the result is the large one multiplied by itself...
One hundred men besieged in a castle, have sufficient food to allow each one bread to the weight of 14 lot a day for ten months.
A merchant woman buys and sells apples and pears for Denaros. How much did she invest in apples; how much in pears?
There are two numbers which are to each other as 5 and 6 and the sum of their squares is 2196. What are the numbers?
Suppose a ladder 60 feet long is placed in a street so as to reach a window 37 feet above the ground on one side of the street...
Prove that if the sums of the square opposite sides of any quadrilateral are equal, its diagonals interect at right angles.
A powerful, unvanquished, excellent black snake, 80 angulas in length, enters into a hole at the rate of 7 1/2 angulas in 5/14 of a day, and in the course of a day its tail grows 11/4 of an angula.

Pages

Dummy View - NOT TO BE DELETED