You are here

Problems from Another Time

Individual problems from throughout mathematics history, as well as articles that include problem sets for students.

In a given square, inscribe 4 equal circles so that...
An erect pole of 10 cubits has its base moved 6 cubits. Determine the new height and the distance the top of the pole is lowered.
Twenty-three weary travelers entered a delightful forest. There they found 63 numerically equal piles of plantain fruit.
A certain bishop ordered that 12 loaves be divided among his clergy.
Determine the dimensions for a right-angled triangle, having been given the hypotenuse, and the side of the inscribed square.
Three equal circumferences with radii 6" are tangent to each other. Compute the area enclosed between them.
How a translation of Peano's counterexample to the 'theorem' that a zero Wronskian implies linear dependence can help your differential equations students
Now there are three sisters who leave home together.
A boy gives 11 coins of equal denomination to a man, and the man finds that their total value in yen is 4 less than his age.
There were two men, of whom the first had 3 small loaves of bread and the other, 2.

Pages

Dummy View - NOT TO BE DELETED