You are here

Problems from Another Time

Individual problems from throughout mathematics history, as well as articles that include problem sets for students.

Two bicyclists travel in opposite directions around a quarter-mile track and meet every 22 seconds. When they travel in the same direction on this track, the faster passes the slower once every 3 minutes and 40 seconds. Find the rate of each rider
Having been given the perimeter and perpendicular of a right angled triangle, it is required to find the triangle.
There is a tree with 100 branches. How many nests, eggs and birds are there?
Two men starting from the same point begin walking in different directions. Their rates of travel are in the ratio 7:3.
A water tub holds 73 gallons; the pipe which fills it usually admits 7 gallons in 5 minutes; and the tap discharges 20 gallons in 17 minutes.
In a square box that contains 1000 marbles, how many will it take to reach across the bottom of the box in a straight row?
A cylindrical tin tomato can is to be made which shall have a given capacity. Find what should be the ratio of the height to the radius of the base that the smallest possible amount of tin shall be required.
A round pond sits in a rectangular garden. Its center is inaccessible; however, you know the distances from each corner of the garden to the center of the pond: 60, 52, 28, and 40 yards. What is the radius of the pond?
The authors recount the 'great tale' of Napier's and Burgi's parallel development of logarithms and urge you to use it in class.
A man, woman, and two boys desire to cross a river, but their boat has weight restrictions!