You are here

Problems from Another Time

Individual problems from throughout mathematics history, as well as articles that include problem sets for students.

The cost per hour of running a certain steamboat is proportional to the cube of its velocity in still water. At what speed should it be run to make a trip up stream against a four-mile current most economically?
Divide 100 loaves of bread among 10 men including a boatman, a foreman, and a doorkeeper, who receives double portions. What is the share of each?
The perimeters of two similar triangles are 45 and 135 respectively. One side of the first triangle has length 11″ and a second side, 19″. Find the lengths of the sides of the second triangle.
One says that 10 is divided into three parts and if the small part is multiplied by itself and added to the middle one multiplied by itself the result is the large one multiplied by itself...
A set of n disjoint, congruent circles packs the surface of a sphere S so that each region of the surface exterior to the circles is bounded by arcs of three of the circles.
An oracle ordered a prince to build a sacred building, whose space would be 400 cubits, the length being 6 cubits more than the width, and the width 3 cubits more than the height. Find the dimensions of the building.
Show that the curves x2 - y2 = a2 and 2 xy = b2 cross at right angles.
The highest point of the Andes is about 4 miles above sea level.
Now a good horse and an inferior horse set out from Chang'an to Qi. Qi is 3000 li from Chang'an.
The steamer, Katie, leaves the wharf at New Orleans and runs an average speed of 15 mph. When Katie had gone 25 miles, the steamer R.E. Lee leaves the wharf and runs the average speed of 18 mph. How far will the Lee go before she overtakes the Katie?