You are here

Problems from Another Time

Individual problems from throughout mathematics history, as well as articles that include problem sets for students.

There is a log 18 feet long, the diameter of the extremities being 1 ft and 2.6 ft respectively...
In baking a hemispherical loaf of bread of 10" radius, the crust was everywhere of an equal thickness, and the solidity of the crust was equal to half the solid content of the whole loaf. What were the dimensions of the interior soft part?
Given a triangular piece of land having two sides 10 yards in length and its base 12 yards, what is the largest square that can be constructed within this piece of land so that one of its sides lies along the base of the triangle?
Discussion of 15th century French manuscript, with translation of its problems, including one with negative solutions
A gentleman has a garden of rectangular form and wants to construct a walk of equal width half way round to take up half the garden. What must be the width of this walk?
What is the sum of the following series, carried to infinity: 11, 11/7, 11/49, etc.?
Suppose that the propability of success in an experiment is 1/10. How many trials of the experiment are necessary to insure even odds on it happening at least once?
Two cog-wheels, one having 26 cogs, and the other 20 cogs, run together. In how many revolutions of the larger wheel will the smaller gain in 12 revolutions?
Two merchants, A and B, loaded a ship with 500 hhds (hogshead) of rum; A loaded 350 hhds, and B the rest; in a storm the seamen were obliged to throw overboard 100 hhds; how much must each sustain of the loss?
Having been given the sum of two numbers,a, and the difference of their squares,b, find the numbers.