You are here

Problems from Another Time

Individual problems from throughout mathematics history, as well as articles that include problem sets for students.

If I were to give 7 pennies to each beggar at my door, I would have 24 pennies left in my purse. How many beggars are there and how much money do I have?
A horse halving its speed every day runs 700 miles in 7 days.
Having been given the lengths, a and b, of two straight lines drawn from the acute angles of a right triangle to the middle of the opposite sides, determine the lengths of those sides.
There is a fish whose body weighs 8oz. Tell me how much the whole fish weighs?
How a translation of Peano's counterexample to the 'theorem' that a zero Wronskian implies linear dependence can help your differential equations students
Rabbits and pheasants are put in a basket.
There is a tree with 100 branches. How many nests, eggs and birds are there?
Two men starting from the same point begin walking in different directions. Their rates of travel are in the ratio 7:3.
Discussion of 15th century French manuscript, with translation of its problems, including one with negative solutions
There is a number which when divided by 2, or 3, or 4, or 5, or 6 always has a remainder of 1 and is truly divisible by 7. It is sought what is the number?