You are here

Intuiting Mathematical Objects using Kinetigrams - References

John Pais

Hersh, R. (1997). What is Mathematics, Really? New York: Oxford University Press, Inc.

Kline, M. (1967). Calculus: An Intuitive and Physical Approach. New York: John Wiley & Sons, Inc.

Kline, M. (1977). Why the Professor Can't Teach: Mathematics and the Dilemma of University Education. New York: St. Martin's Press.

Pais, J. (1997-2001). Calculus for Kinetic Modeling. St. Louis: Interactive MathVision.

Pais, J. (in preparation). Intuiting the Objects of a Mathematical Theory.

Quine, W. V. (1981). Theories and Things. Cambridge: Harvard University Press.

Resnik, M. D. (1997). Mathematics as a Science of Patterns. New York: Oxford University Press, Inc.

Spitznagel, E. (1992). Two-Compartment Pharmacokinetic Models. C-ODE-E, Harvey Mudd College.

Tall, D. (1991). Intuition and Rigour: The Role of Visualization in the Calculus. In W. Zimmermann and S. Cunningham (eds.), Visualization in Teaching and Learning Mathematics. MAA Notes Number 19, Washington: The Mathematical Association of America.

Thurston, W. P. (1994). On Proof and Progress in Mathematics. Bulletin of the American Mathematical Society 30 (2), 161-177.

Tieszen, R. (1998). Gödel's Path from the Incompleteness Theorems (1931) to Phenomenology (1961). Bulletin of Symbolic Logic 4 (2), 181-203.

Yeargers, E. K., R. W. Shonkwiler, and J. V. Herod (1996). An Introduction to the Mathematics of Biology. Boston: Birkhauser.


John Pais, "Intuiting Mathematical Objects using Kinetigrams - References," Loci (October 2004)


Journal of Online Mathematics and its Applications