The College Mathematics Journal
Contents for January 2000
Will the Real Bifurcation Diagram Please Stand Up!
by Chip Ross and Jody Sorensen
Dynamical systems offer a rich field for student experimentation. A
standard picture (the orbit diagram) that shows the location of attractive periodic points
is often called the bifurcation diagram. The authors say that the real
bifurcation diagram should show both attractive _and_ repelling periodic
points, provide one, and much else on f(f(f( ... (x) ... ))).
is the Minimum Value of Pi
by Charles Adler and James Tanton
If we define a circle to be the set of points (x, y) such that xp +
yp = 1, p >= 1, then the ratio of the circle's circumference to its
diameter is a function of p. When p = 2 the ratio takes its smallest
value, showing that our familiar circles are more circular than any
other circles.
Optimal Card-Collecting Strategies for Magic: The Gathering
by Robert Bosch
Games that involve the use of cards--not the usual playing cards
with pictures of kings and queens, but those with pictures of monsters
and alien landscapes--are very popular with a segment of the
population. How shall cards be purchased (they come in packages of
different sizes) to best collect a complete set? Most of the time, but
not always, by buying big packages.
Artemus Martin: An Amateur Mathematician of the Nineteenth Century and
His Contribution to Mathematics
by Patricia Allaire and Antonella Cupillari
Artemus Martin (1835-1918) lived in a mathematical world very
different from ours, and very different from the European mathematical
world of his time. In telling us what he did and how he did it, the
authors give us a valuable glimpse into the past and keep us from making
(usually unconsciously) the common and wrong assumption that everything
has always been much as it is now.
Contumacious Spheres
by Larry Grove and Olga Yiparaki
Let us put n-dimensional unit spheres in an n-dimensional box,
packing them regularly with centers at (+-1, +-1, ... +-1). In the
center there is a sphere tangent to the spheres around it. For n = 2,
think of four fifty-cent pieces surrounding a dime and for n = 3 eight
tennis balls surrounding a golf ball. When n = 4, the inner sphere is
also a unit sphere. When n = 9, it is tangent to the box. When n >=
10, it extends outside the box. The volume of the box, however remains
greater than the volume of the sphere until dimension 1206. Strange
things also happen at dimension 264.
Partially Differentiable, Yes; Continuous, No
by David Calvis
You may know the function that has partial derivatives everywhere
but fails to be continuous at the origin, but you probably do not know
when the example first appeared in print (1884). How about the function
that tends to zero along every line through the origin but which is
discontinuous at (0, 0)?
Classroom Capsules
Group Operation Tables and Normalizers
by Colonel Johnson, Jr.
For a subgroup H of G, it is possible to pick an operation table
for G showing properties of the normalizer, the largest subgroup of G
having H as a normal subgroup.
Getting Normal Probability Approximations Without Using Normal
Tables
by Peter Thompson and Lorrie Lendvoy
What to do if stranded on a desert island without normal tables?
Actually, the question is, how to make students understand better the
normal density?
Normal Lines and Curvature
by Kirby Smith
Take normals to a curve at x and x + h and let h approach zero.
What happens to their point of intersection? It _doesn't_ go off to the
point at infinity.
A Picture of Real Arithmetic
by Paul Fjelstad and Peter Hammer
Stereographic projection enables us to add and multiply numbers
geometrically, both on the same diagram.
Integrals of cos2n x and sin2n x
by Joseph Wiener
Complex numbers let the integrals of the title be evaluated
fairly quickly.
Fallacies, Flaws, and Flimflam
edited by Ed Barbeau
A proof that there are no contradictions.
Problems and Solutions
Media Highlights
Book Review
Review of Calculus Made Easy (by Silvanus P. Thompson, new edition
prepared by Martin Gardner) by Carl Linderholm, author of Mathematics
Made Difficult.