(iii) The standard argument yields an analogue of the Proposition for the Integral
Mean Value Theorem: For continuous f on [a, b], there exists ¢ € (a, b) such
that

b c
) f fydi - / Fdt | = (c—a) = b -0,

(iv) Other standard arguments now lead to expected analogues of the Proposition
and of (iii), for the Cauchy Mean Value Theorems. We leave the interested
reader to fill in the details.
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Symmetric or Skewed?

Joseph G. Eisenhauer, (eisenhauer@canisius.edu), Canisius College, Buffalo, NY
14208-1098

Can the symmetry or skewness of a random variable’s distribution be determined
solely by inspecting its measures of center? On the other hand, does the direction of
skewness indicate the ordering among measures of central tendency? Although there
appears to be some confusion in both textbooks and periodicals on these issues, the
present note suggests that the answer to both questions—at least with respect to dis-
crete distributions—is “no”.

In the past decade, several writers, including Chambers [1] and Lee [2], have dis-
cussed the relationships among measures of central tendency in continuous probabil-
ity distributions. But as MacGillivray [3, p. 366] notes, “the relationship between the
mean, medians [sic], and modes for discrete distributions is of course a more difficult
problem.” Indeed, when discussing discrete distributions, textbooks often make asser-
tions such as, “If the data set is unimodal, but not symmetrical, the mean, mode, and
median will be located at different points in the distribution [6, p. 47].” This is typically
followed by an explicit ordering of the three measures; remarkably, Mogull [5] found
such presentations in about eighty percent of the textbooks he sampled. Noting that
such statements are incorrect, Mogull [5, p. 745] argued that “with a positively (neg-
atively) skewed sample distribution, both the median and mean lie to the right (left)
of the mode but in unpredictable order” (emphasis in original). In fact, however, even
this weaker claim is invalid. An inequality between the mean and other measures of
central tendency may suggest asymmetry in a discrete unimodal distribution, but the
reverse is not true. Skewness does not necessarily imply that the mean, median, and
mode are unequal. Nor does equality among the measures of central tendency guaran-
tee symmetry in either a discrete probability distribution or a sample distribution.
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To demonstrate these propositions, it is sufficient to produce examples of skewed
distributions in which the mean, median, and mode are all equal. Among discrete prob-
ability distributions, the binomial with ten trials and a ten percent probability of suc-
cess is one obvious example: it is unambiguously skewed to the right, but the mean,
median, and mode are all equal to one. The distribution is depicted in Figure 1.
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Figure 1. Binomial distribution with 10 trials and .10 probability of success.

Likewise, constructing a sample distribution with these properties is elementary. If
we begin with any discrete, skewed distribution and add a sufficient number of obser-
vations at the mean, the mean will inevitably become both the mode and the median,
but the distribution will still be skewed. An interesting example is the distribution
generated by the function f(x) = x, where x takes positive integer values from 1
through 10, and f(x) denotes the frequency with which x occurs. The distribution is
clearly asymmetric, and sports the long left tail characteristic of a negative skew. Yet
the mean and median are both 7, and by simply adding four more observations at the
mean, the mode becomes 7 as well; all three measures of central tendency are then
equal.

As a final example, consider a discrete distribution such that

f(i—l):Zkf(i+k) and f(X) > f(x—=1)

where k takes positive integer values, and the only non-zero values of f(x) occur at
X, X — 1, and all x + k. The equality f(x — 1) = )_kf(X + k) indicates that posi-
tive and negative deviations from X offset each other, so that x is the sample mean.
The inequalities f(x) > f(x — 1) and f(x) > f(x + k) for all k indicate that x is
the modal observation. And because f(X) > f(x — 1) — Y  f(x +k), X is also the
median. Thus, all three measures of central tendency are equal, yet the distribution
will only be symmetric if max(k) = 1. For max(k) > 1, the distribution is positively
skewed. Indeed, the extent of the skewness increases with k, while the measures of
central tendency remain equal. As a concrete illustration, consider the following hy-
pothetical set of 44 observations:

xx 6 7 8 9 10
fx): 10 28 3 2 1.

This data set is clearly skewed to the right, yet it has a mean of 7, a median of 7, and

a mode of 7. Indeed, by virtue of having enough observations at the mean, its first and
third quartiles are both equal to 7 as well. Moreover, adding an observation at 11, four
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more observations at 6, and eleven more observations at 7 would increase the extent of
the asymmetry without distorting either the equality among the measures of center or
the equality among the quartiles. Of course, any number of such examples, including
positive and negative skews, can be generated in this manner.

It follows from this simple demonstration that measures of skewness which rely on
differences in measures of central tendency cannot provide a completely unambigu-
ous distinction between symmetric and skewed distributions, when applied to discrete
variables. As noted in [3] and [5], a century ago Karl Pearson developed one measure
of skewness for continuous distributions based on the difference between the mean and
the median, Sk = 3(Mean — Median)/o, and another based on the difference between
the mean and the mode, Sk’ = (Mean — Mode)/o, where o is the standard deviation.
The equivalence of these measures is the subject of the debate between Chambers [1]
and Lee [2]; at issue here, however, is whether either measure is valid for discrete dis-
tributions. Mogull [5], for example, claims that Sk’ is superior to Sk for determining
the skewness of sample data, and Wei and Mingshu [7] likewise judge a frequency dis-
tribution’s skewness by the difference between the mean and the mode. But for each
of the examples presented here, Sk = Sk’ = 0; both measures suggest symmetry, even
though the distributions are all clearly skewed to one side or the other.

A third measure, the quartile coefficient of skewness (see for example [4]) is based
on differences in quartiles, rather than central tendency:

Skq = (Q3— Q) — (02— Q) _ 03 =20+ 0y
03— 0, 03— 0

where Q; represents the ith quartile. But here again, for each of the distributions given
above, Skq = 0 despite the obvious asymmetries; in the last example, this outcome
results simply from the large number of observations occurring at the mean. Clearly,
neither Sk, Sk’, nor Skq provides an adequate indication of skewness for discrete
distributions.

The asymmetry can, however, be captured more readily by an alternative coeffi-
cient of skewness also attributed [4] to Pearson, which is measured as a3 = m; /(my)3/?
where m; and m; are the second and third moments around the mean, respectively. Be-
cause it uses every observation rather than a few summary statistics, this measure gives
a more accurate description of the shape of the distribution. For any symmetric distri-
bution, a3 = 0. In contrast, the binomial example given above yields a3 = .85; for the
negatively skewed sample above, a3 = —0.6; and in the final example, a3 equals 1.5
initially and rises to 2.1 when the right-hand tail is extended. And like Sk, Sk’, and
Skq, a3 is independent of the units of measurement, and is thus invariant with respect
to linear transformations of data; a sample of golf scores, for instance, would yield
the same value of &3 whether measured in total strokes or relative to par. Compared
to the alternatives, then, this ‘momentary’ coefficient of skewness provides an equally
robust yet more accurate method of distinguishing between symmetric and skewed
distributions of discrete random variables.
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A

Elementary Linear Algebra and the Division Algorithm

Airton von Sohsten de Medeiros, Instituto de Mateméatica, UFRJ, Departamento de
Matemadtica Aplicada, Rio de Janeiro, Brazil

The set of polynomials is perhaps the first meaningful example of a vector space,
appearing in all college textbooks in linear algebra, whose elements are familiar ob-
jects to any high school student. However, the old well known properties (of the ring)
of polynomials, thoroughly explored in high school, are in general not related, in any
convincing way, to the new structure of vector space. This suggests to the student the
erroneous idea that no relevant link does exist between those two structures.

The purpose of this note is to exhibit an elementary example of such a link. Namely,
we shall describe how to derive, from the simplest properties of the finite dimensional
vector spaces, the

Division Algorithm. Let K be a field and K[x] be the ring of polynomials, in one
indeterminate, with coefficients in K. If F € K[x] is not the zero polynomial, then,
given G € K[x] there exist unique polynomials Q, R € K[x] satisfying:

i) G=Q-F+R
(ii) either R = 0 or degree (R) < degree (F).

Towards the establishment of this result we shall only make use of the following
facts:

(1) In an n-dimensional vector space E, any linearly independent set of n vectors
constitutes a basis of E.

(2) The set P, of polynomials in K[x] of degree d < n is a vector space of dimen-
sionn + 1 over K.

(3) Any set of nonzero polynomials in P, of distinct degrees is linearly indepen-
dent.

Now, the proof is carried out as follows:

Let m = degree(F) and n = degree(G). If n < m there is nothing to prove since,
G = O - F + G is the only possible way to write down G satisfying (i) and (ii) above.
Hence, we shall suppose in the sequel that n > m.

The set B={1,x,...,x™', F,xF,...,x"™F} of n + 1 polynomials in P, is a
basis of P,. In fact, B is a linearly independent set because of (3) and consequently a
basis in view of (2) and (1). Since G € P, there exist unique scalars ag, ai, . . ., dm_1
and by, by, ..., b,_,, such that
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