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In the same manner, we can begin with

xs+11n X xx+1

s+1 (s+1)2

f(x)=

to establish (2) in general.

Notational Collisions
J. Hillel, Concordia University, Montreal, Quebec, Canada

“Interpreting a symbol is to associate it with some concept or mental image to
assimilate it to human consciousness.”
The Mathematical Experience, Davis and Hersh

Mathematics is often eulogized for its compact and concise notational systems and
for its use of symbols to represent (possibly quite complex) objects, constructions,
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and operations. Yet we know that for learners of mathematics, the attempt to attach
meaning to symbols and notations is at the heart of a multitude of cognitive
difficulties. For example, there is the well-known difficulty in sorting out whether a
letter signifies a variable, an unknown, a constant (“a variable at rest” [Bourbaki)), a
parameter (““a constant that varies”), etc.

Notational collisions refers to a more mundane, yet common situation, which
also seems to be the cause of many cognitive obstacles; namely, when a letter is used
to signify one thing and afterwards it is used to signify something else. A frequent
case of this occurs in teaching, when the use of symbols within a general theory
(global use) clashes with their use in special cases of the theory (local use) where the
choice of symbols is determined by some historical precedent or by an appeal to
more familiar conventions. The intent of this capsule is to illustrate a few examples
of notational collisions from linear algebra.

Consider the notational collision between the representation of a system of m
equations in » unknowns as

apxy + -+ apx,=b
a,1%1 + o+ amnxn=bm’

and the more familiar convention for 2 X 2 (or 3 X 3) systems as in
ax+by=c
ax+b,y=c,.

This may not seem to represent much of a shift, but think of the student who is
trying to make sense out of the matrix equation Ax = b. In the general case, 4, X

and b match faithfully with the letters used for their respective components. But in
this specific case, b is the vector [‘:‘ f, and b;, b, are now the

2] rather than [Z;
y-coefficients in the two equations.

Another illustration of notational collisions is the use of A7 to denote the
transpose of a matrix A, after the letter 7 has been used consistently to represent a
linear transformation. This is just plain sloppiness. But what about the frequent use
of A" and A’ as other standard notations for the transpose of a matrix? The former
clashes head-on with the notation for powers of a matrix, and this creates some
interesting anomalies such as having the coexisting relations (4")' = 4 and (4™)" =
A™". (Should one need to specify m# ¢ and n+# ¢ in the second relation?) The
notation A’ for the transpose of A collides with the derivative notation (as, for
example, the “derived” matrix whose elements are the derivatives of the original
matrice’s elements) or with the common use of 4 and A4’ to designate two arbitrary
elements (as in the relation tr(4 + A") =tr 4 + tr A").

Mathematics teachers know that symbols convey only the meaning that we
attribute to them, and that we are empowered to change either the symbols or their
meaning as we see fit (though some symbols, such as [, are so deeply entrenched in
the mathematical culture that they have the status of ‘untouchables’). We are also
fairly adept at adjusting to changes in notations or symbols (perhaps not as adept as
we would like to be—as a student, I used to have great difficulty with the first
editions of Van der Waerden’s Modern Algebra simply because he used capital
gothic letters to denote the elements of a set).
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However, good pedagogical sense certainly favors consistent use of symbols and
the avoidance of whimsical changes. The implicit message we pass on to our
students is that, within a given course, specific symbols are the carriers of specific
concepts, and that it is unnecessary to make these concepts explicit for every use of
the symbols. This message is often communicated by the gradual relaxation of
details that we give to symbols and notation. Thus, at the beginning of a linear
algebra course, we may say “the system of equations Ax = b, where

4y o ay, *, b,
A= x=|: and b=|:|”

ml U Qn Xm bm

But eventually we talk about “an m X n system AXx =b with 4 as the coefficient
matrix.” And finally, we may simply say “consider 4X = b.” At this point, we have
sealed an unwritten contract with our students about the shared interpretation of
the symbols 4, X, and b. i

Students, in fact, take symbols much too literally. They have trouble dealing with
changes in labelling, as when using w instead of x for a variable, or using B instead
of A to represent some arbitrary matrix. By contrast, they seem to derive a strong
sense of security from a consistent use of symbols, since these symbols become
associated for them with particular concepts (P and Q with nonsingular matrices,
X and Y with column vectors, etc.). Since students’ established symbol-concept
pairings have an important mnemonic function and are usually consistent with our
implicit teaching strategy, notational collisions create feelings of deception: students
perceive them as an arbitrary and unilateral break of the implicit ‘contract.’

A notational collision ‘deluxe’. My concern with notational collisions stems
from a particular experience in teaching an introductory linear algebra course. Just
at what should have been the highlight of such a course, the text contained a
spectacular collision (to be described below) in which all the global symbols of the
general theory clashed with the local symbols of the special application. Since I
tended to adhere to the text’s notation in an effort not to confuse the students, I
simply used the same symbols in my lectures.

Now, it is fairly traditional to conclude a linear algebra course with some results
on diagonalization of matrices and, in particular, with the principal axis theorem
that establishes the existence of an orthogonal basis of eigenvectors for any real
symmetric matrix. This theorem has a beautiful geometric application: the classifi-
cation of (nondegenerate) equations of the second degree in 2 and 3 variables into
conics and quadric surfaces (or, as we often tell the students, “eliminating the mixed
terms” from a second degree equation). *

This material is usually covered in a rather short span of time at the end of the
course. Although it is really just about the existence of nontrivial solutions of the
system (A —AJ)x =0 and about the rank of such a system, we seem to forget how
many concepts we introduced along the way (eigenvalue, eigenvector, characteristic
polynomial, similarity, congruence, quadratic form, etc.). I once counted up to 35
new definitions related to the topic of diagonalization. My point here is that some
notational collisions come at a particularly inopportune time, when the students are
already at the ‘overload’ point.
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The text I was using for the course was fairly standard in its notation. However,
as the diagonalization theory is developed, some of the symbols used acquire a more
specialized meaning than they had in the general context:

A, B matrices, now always square and even symmetric.
P,Q nonsingular matrices, now often orthogonal.
XY column vectors.

X, A transposed matrices.

B=P’AP congruence relation.

In the text’s section on ‘simplifying’ the general equation of the second degree in
two variables, such an equation is written as Ax>+ Bxy + Cy?2+ Dx + Ey + F=0.
Then, to illustrate what is happening geometrically, the text has the following figure:

Y Y

P(X,y) X’

X

Most of us would not find anything unusual in all this; both the global and local use
of the symbols are familiar and, more or less, standard. After the end of the lecture
on the second degree equation, one of the better students in the class admitted that
he was confused. The dialogue between us went something like this:

“I don’t understand the meaning of Ax? here (pointing to the equation
Ax*+ Bxy + Cy*+ Dx + Ey + F=0).”

“Why is this a problem?”

“Well, 4 is a matrix and x? is a number, so what does 4x? mean?”
“Hold it, 4 is not a matrix, it is just the coefficient of x2.”

“I thought that A was always a matrix in this course.”

Only when attempting to ‘straighten out’ this student did I become aware of the
multiple collisions created by the text and myself:

A, B are no longer matrices but coefficients of terms in the
second degree equation.
P is no longer an orthogonal matrix but a point in the plane.
X, Y are no longer column vectors but labels for the usual
) long
coordinate system.
XY are not transposes but the new coordinate system.

Quite a mess!
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Notational collisions raise several questions, not the least of which is ““what’s this
fuss all about?” We can simply take the attitude that the ability to interpret a
symbol appropriately in a given context is part and parcel of doing mathematics;
that it is up to the students themselves to make the necessary separation between
symbol and meaning. There is, of course, a ring of truth to this but that doesn’t
exempt us from being more judicious in our selection of symbols.

The above “deluxe” example illustrates a collision between two standard nota-
tions which suddenly had to co-exist. With a bit of foresight, most of the confusion
could have been eliminated. Since such examples are rampant in our courses, we
should keep notational collisions in mind the next time the perennial “why can’t
they understand?” question comes up amongst colleagues.

A Closer Look

Self-similarity is an easily recognizable quality. Its images are everywhere
in the culture: in the infinitely deep reflection of a person standing
between two mirrors, or in the cartoon notion of a fish eating a smaller
fish eating a smaller fish eating a smaller fish. Mandelbrot likes to quote
Jonathan Swift:

“So, Nat’ralists observe, a Flea

Hath smaller Fleas that on him prey,

And these have smaller Fleas to bite’em,

And so proceed ad infinitum.”

James Gleick, Chaos: Making a New Science, Penguin Books

The largest island in a lake is Manitoulin Island (1,068 square miles) in
the Canadian (Ontario) section of Lake Huron. The island itself has a
lake of 41.09 square miles on it, called Manitou Lake, which is the
world’s largest lake within a lake, and in that lake are a number of
islands.

Guiness Book of World Records 1987, Bantam Books
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